Gopal2002's picture
Push model using huggingface_hub.
5568b49 verified
|
raw
history blame
25.2 kB
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: " \n \n \n\nHIRAKUD POWER / SMELTER\n\n@ - Payment Order\n\n( Address\
\ )\n\nEmp.No./S.Code No. Qhle\nby Cash/Cheque/D.D./Transfer the sumof ~ 35, +S0/—\n\
Rupees Thi ei ve therane Seven hun\nFi \\\nMail Id of Initiator: : OF)\n\n \n\n\
| Details of Payment\n\n;\n| AtMenclance, Cleritage ancl Otner\naa T\n\n|mise:\
\ Conveyances for ip eome No. |\n2x to 2-9, 3\\ 32 ano 34 of Qo| 2\n\nURL of payment:\n\
\nin . TotalRs.| 35, too /]- .\n\nPrepared by Recommended by Endorsed by Authorised\
\ By Approved by\n‘ A =\nPort Sara ee\nA ee EU (NY—\nDate 20/ 19 Plant Head Head-F\
\ &A Head - Sambalpur Cluster\n\n \n \n\nCharge\nAccount\n\n \n \
\ \n\nLeqa2\n\n~ Odisha cluoy\n\nOI) 202 Sefer (90\n\nONLINE PAYMENT\n\n \n\n\
\ \n\nCashier\nReceived Payment | Charge Account Checked by\n\nae eee _\n\n \n\
\nSignature\n\f"
- text: " \n\f"
- text: "Expenses during visit of morning for coal logistic.\n\nSl.no. _ Date Of Visit\
\ Particulars Amount Remarks\n1 21-Feb-16 Tea,Snax ager mis. - 105.00 Along with\
\ Mr N K Kar\n\n \n \n\n \n\n \n\n \n\nft eee ‘\n~# “Lunch. ° of AVS\
\ |\nee ou SATS i\n2 22-Feb-16); | “Fea soe mis, dee aot]\n; 3 . cng! a oa hoy\
\ ‘ “e i hs ye eo 1\n3 23-Feb-1600). Téa,Snax Andithis. I Along with Mr'N K Kar\
\ .\nee _ |) Lunch... a 00° oO 2 !\n4 24-Feb-16 Tea,Snax And mis. okt? |\nLinch\
\ ~ : egthedgtt £92 ox\n5 25-Feb-16\n\nmeted FES entre? i462\n\n- Teaisnax And\
\ mis. r AS Vi on\n) ie ihe oe » Lunch eres , Mo\n\n6 26-Feb-16 Tea, Snax And\
\ nis,\n\nyeahh! ct\n\nfeo, 7\n\n \n\n \n \n \n \n \n\n, 140.00; - Pend\
\ wih iM NK Kar\nlene . : -aaciog par rs :\n’ a7-Febalt Tea,Snax And itis” \"\
425.00 Along with Mr. K Kar\nLunch 280,00 es _— ,\n8 29-Feb-16 se Tea,Snax And\
\ oie Bh i af U5 5.00). \" pe. a!\n9 te Snax ‘And mis. ce n20. to & oe\n\n10\n\
\neee £50. Alone wit Mr N K Kar bye efort-\n\nevn, enews) :\nLaheue 325. 00 x\
\ Up £0 perenne os\neerie coer re ue\n\n \n\n,\n\n11\n\nHf figs bh.\n\n \n\n \
\ \n \n \n \n\n \n\n4\n‘\na\nvt wr 4 ‘\n“ane . mae t\nwha via ‘\n‘\n5\n12 {\n\
_ o |\n\" nay\ni\n¥\n4\n4\n_\ni\nTew. EN at Rbiew: Caen sere 4\ntA eS : f i :\n\
i — Eyl 3. 4\nes, j Lax > * awe 4\nwe be oy . “ tyne eel\ni ad\n: oe\nSeog) ayM.\
\ 44\nwr\na, obo ye eect ee —\n-\n\n \n\f"
- text: "HINDALCO INDUSTRIES LIMITED EMPLOYEES’ PROVIDENT FUND II\n\n| | B)REASON\
\ OF LEAVING SERVICE: RESIGNATION\n_ SERVICE TERMINATED ON\n\n \n \n \n \
\ \n \n \n \n \n\n \n\n|\n\n| | ACCOUNT OF (A) ILL\nHEALTH OF MEMBER\
\ (8)\nCONTRACTION /\n\nDISCONTINUATION — OF\nEMPLOYER'S BUSINESS OR\n\n(C) OTHER\
\ CAUSE BEYOND\n\nTHE CONTROL OF THE\n\n| EMBER\n|i PERSONAL REASON _\n\n__\n\n\
PAYMENT UCO BANK ,HIRAKUD SAMBALPUR ,ODISHA.\n(PLEASE ATTACH A COPY OF cmmntnnmeanisnnennenesennmaneeneisene\
\ nese\nCANCELLED CHEQUE/ATTESTED\n| COPY OF FIRST PAGE OF BANK PASS | IFS CODE\
\ ... UCBA0000285\n| BOOK _\nTa) FULL POSTAL ADDRESS WITH E- AT. GUNDRUPADA, PO-HIRAKUD,\
\ DIST- SAMBALPUR, ODISHA-.\n\n| 12 I BANK ACCOUNT DETAILS “FOR SAVING BANK ACCOUNT\
\ NO — 02850110044179\n!\n\nMAIL ID (IF ANY)\n\n \n\nPIN ...768016\n| E-MAIL ID\
\ :-\n\n- INCASE THE AMOUNT IS USED FOR ANY PURPOSE OTHER THAN STATED IN COLUMN\
\ (9) ABOVE, | AM\nLIABLE TO RETURN THE ENTIRE AMOUNT WITH PENAL INTEREST.\nTHE\
\ MEMBER HEREBY DECLARES THAT HE HAD NOT BEEN EMPLOYED FOR 2 MONTH (YES/NO)\n\n\
(APPLICABLE FOR PF SETTLEMENT ONLY)\nve SIG N41\n\nMEMBER SIGNATURE AND DATE\n\
\nCERTIFIED THAT THE APPLICATION HAS BEEN SIGNED BY THE MEMBER IN MY PRESENCE\
\ AFTER HE/SHE HAD\nREAD THE CONTENT / THE CONTENT HAD BEEN EXPLAINED TO HIM /\
\ HER BY ME AND THAT THE\nINFORMATION GIVEN IN THE APPLICATION FORM |S CORRECT\n\
\nDATE:- : yA\nye\"\nEMPLOYER'S SIGNATURE\n\nDESIGNATION & SEAL OF EMPLOYER\n\
(OPTIANAL FOR FINAL PF SETTLEMENT)\n\nENCLOSURES: WV SELF ATTESTED AADHAR CARD\
\ & PANCARD\n2 cory OF CANCELLED CHEQUE / SELF ATTESTED COPY OF 15° PAGE OF PASS\
\ BOOK.\n\f"
- text: " \n\nHINDALCO INDUSTRIES LIMITED\nHIRAKUD\n\nPAYMENT ORDER\n\nPayto Simanchal\
\ Khatai\nCash Vr.No.\n\n \n\nEmp.No/S.Code No. _ ~\nby Cash/Cheque/D.D./Transfer\
\ the sum of Rs.2,00,000.00 apvrno,lOlY% 3s\nRupees Two Lakh only\n\n \n\nDetails\
\ of Payment Amount (Rs)\n\n \n\nns . 2,00,000\n\n \n\n \n\n \n\n \n\n \n\n \n\
\n2,00,000.\nPrepared by Recommeded by Endorsed by Authorised By Approved by\n\
\n9 ’\nner (wy\nDate Dept. Head Plant Head -F&A Head - Sambalpur Cluster\nPayment\
\ made on Charge\noem ra\n\n(b) By Cheque ner 2] 2G ~ 2> 7 + DA SHO-KLB (321)\n\
\nState Bank of india, Burla\nState Bank of India, Hirakud\nPunjab National Bank,\
\ Sambalpur [PNB-1]\n\n \n\n \n\n \n\n \n\n \n\nUuCcO Hirakud\n\n \n\nUCO’Bank,\
\ Sambalpur\n{DBI , Sambalpur (IDBI -1)\nIDB! , Sambalpur (IDBI -2)\n\nReceived\
\ Payment Charge Account Checked by\nSignature\n\n \n\n \n\n \n\n \n\n \n\n \n\
\f"
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with BAAI/bge-small-en-v1.5
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | <ul><li>'GHt Sa [OI uco Bank\n\nvis Free Number: 180¢-193-9125 _\n\nDICGC INSURANCE UPTO 5 LAC\n\nBRANCH\n\nUCO Bank\nP NT\n(1) Consuitants are requested to note that all moneys\n\nremitted to the Bank should either be sent by Registered\nPost or handed over to the Cash Department, as no\n\n \n\nUco BANK\n\naq\n\nName\n\n"IFSC: uceaocotms\n\' dress\n\nKICK Code: 7428029504\n\nHIRAKUD\n-HIRAKED BRARCH HIRAKUS\nProae:\n\nindividual (s) outside. the Cash Department has/have JHARY EIST\nauthority to receive cash. KADAMPOLA\n(2) The account-holder should insist on delivery of Pass Book HERAKUD\n‘ made uptodate as far as possible on the same date; a 6.8%\n- otherwise he should obtain a receipt indicating when the HIRAKYD PIN .#oBlss\nPass Book will be delivered.\n(3) Deposit Rules in vogue can be obtained by account-holder TET. WaT / Asst.\nfrom the Branch on request Q28501 19027145\nPB.NG. }\n\n \n\n \n\n \n\nfe er ee me\n\n \n\x0c'</li><li>' \n\n= 2, ip\nO ~\nN 2\na\n: Y ve re ty\n) 3 x.\nNai] (F) my\n\n \n\ny Viayal chat aloala\nSH PPP ea [sys sys *\nas NB\n2\n=\n\ni x X we\na. = Xt +\n— W\nx 2| > x xv)\n— ~ wa al on\nmh a\n\nx\n@\n\n \n\nSy\n>3\nS\nak\n\n \n\n \n\n= coemeirata nani\nyy“\nxX -~|<\n. q - r " 2 e eee\n| S TTT !\n“ sa S ~\ngaysey Maye oe | toe\n\ni\'s . <4 " = : nics\n: 5 oy Sy . : aR N =\nS Sy = yy > =P OW\n, oe Q\n3 4 WK SS j 2 .\n-~ rs, , 4 i AS ~ si 6 .\nA Se S = Ce 4G ‘ tb. ee bene |\n\na\n\n \n\nes |\nTo a 3,\n-} ™ i] nest -— a Dome: eo . Sp a > Ee eh ao Ty ache oe ewe cede oe oe tee ~\n5 . “i a ( . - i -\n\n \n\n \n\x0c'</li><li>'Interest will be payable @ 24 % p.a. if the invoice is not paid within 30 days of the date of invoice.\n\nABBREVIATION: TB — Tower & Basin\nTO — Tower Only\n\n1. All taxes and duties invoiced herein are subject to revision depending upon the final assessment\n\nby the Statutory Authorities. Any such revision will be to buyer’s account.\n\n2. Payments should be made by A/C Payee cheque/Pay oder/bank draft/Online fund transfer\n\nthrough NEFT/RTGS platform in favour of “Paharpur Cooling Towers Ltd.”. Payment towards this\n\nbill made in any other form will be done entirely at your own risk.\n\n3. ALL DISPUTES SUBJECT TO CALCUTTA JURISDICTION ONLY.\n\x0c'</li></ul> |
| 1 | <ul><li>'. Ae - PR CSeathetn & 3)\n" J She ase 9 Pao\n\n‘s lad Bank Afr o Steppe\nIN | fave 4 fi foe & ats bent\n\nHINDALCO INDUSTRIES LIMITED\nHIRAKUD\n\nPAYMENT ORDER\n\nPayto Payment to Mr.Dilip Das\n\n|\nTravel expenses for Interview w candidate (A (Admin) J] jo. _| Cash Vr.No. Q pis | l\n\npk check he inkwes IFSC. code Emp.No/s.codeNo. _ OT Pago |\n\nby Cash/Cheque/D.D./Transfer the sum of —_Rs.13,695.00 _ _| AP.Vr.No.\nRupees Thirteen Thousand Six Hundred Ninety Five Only ———__ ; 3 ua 202 |\nDate\n\n \n\n \n\n \n\nX\n\n5\n\nee |\nain & Flight Tickets is. _ 13,195.00\nConvenience expenses Rs. — 500. 00°\n\n \n\n \n\nDetail Travel plan and tickets enclosed\n\nBank Account details also enclosed\n\n \n\n \n \n \n\nPrepared by Recommended by Endorsed by\nDate q Head- HR\n: Hirakud Complex\n\n \n \n \n\n \n \n\n \n\né y Cash 2. DAD ey ‘ZO\n(i \'y Cheque No DVPOVe Bee\n\n \n\n \n \n\nState Bank of India, Burla\nState Bank of India, Hirakud\n\nPunjab National Bank, Sambalpur [PNB-1]\nUCO Bank, Hirakud\n\nUCO Bank, Sambalpur\nIDB! , Sambaipur (IDB! -1)\nIDBI , Sambalpur (IDBI -2)\n\n \n \n \n\n \n\n \n \n\n \n\n \n \n\n \n\n \n \n \n \n \n\n \n\n \n\n \n \n\nCashier\n\n \n\n \n\nReceived Payment Charge Account Checked by\n\n \n\nSignature Signature\n\x0c'</li><li>'HINDALCO INDUSTRIES LIMITED\nHIRAKUD\n\nPAYMENT ORDER\nPay to FRakesh Gupta ; . . | 3898 BA (Q-1 2-15\n\nCash Vr.No.\n\n \n\n \n\n \n\n— - _ Emp.No./S.Code No. $-392 _\nby Cash/Cheque/D.D./Transfer the sum of a | AP vr.No. 91 355%\nRupees Four Thousand Six Hundred Only\n\n \n\n \n\n \n\n22\nDate 48-02-16\nDetails of Payment Amount\nTowards change of Battery of Vehicle No. OR-02-AM-8904\n\nas detailed below: (Bill Attached)\n(i) Bill No. 3898 Dt.19-12-2015\n\n \n\nTotal Rs. . 4,600.00\n\nPrepared by Recommended by Endorsed by Authorised by Approved by\nLanier bnwnnWenuw \\ \\ .\n\\4 = Ww \\ le\n\n\\ov Jv JI 4.) ee Zan”\n\nDate Dept Head Plant Head Hed - Location Head\n\n \n\n \n\nPayment made on\n(a) By Cash\n\n(b) By Cheque No.\n\n \n\n \n\nState Bank of India, Burla\n\nState Bank of india, Hirakud\n\nPunjab National Bank, Sambalpur [PNB-1]\nUCO Bank, Hirakud\n\nUCO Bank, Sambaipur\n\n{DBI , Sambalpur (IDB! -1)\n\nIDBI , Sambalpur (IDBI -2)\n\n \n\n \n\n \n\n \n\n \n\nCashier\n\nReceived Payment Charge Account Checked by\n\nSignature Signature\n\x0c'</li><li>'tT) Ce cfd\n\n \n \n \n \n \n \n \n\nADITYA BIRLA HINDALCO INDUSTRIES LIMITED\n874 HIRAKUD POWER\n\naN’ PAYMENT ORDER\n\nPP -200| - AI66\n\nCash Vr.No.\n\n \n \n \n\nAP.Vr.No._G/8Ol tT\n\nby Cash/Cheque/D.D./Transfer the sum of\nELEVEN THOUSAND FIFTY FOUR ONLY\n\n \n\nRupees\n\n \n \n \n \n\nDate:- 8.01.20\n\nENERGY CHARGES OF INTAKE CHAMBER FOR THE MONTH OF DEC 2019,BILL NO- L\n1533 2639.00\n8415.00 ~\n\n“\nTotal Total Rs. 41054.00\n\nPrepared by Recammeded by Endorsed by Authorised By Approved by\n\npu ( Nx\nHead-F&A Head - Sambalpur Cluster\nCharge Account an ou\n\n \n\n \n \n \n \n\n \n\nENERGY CHARGES OF ASH MOUND FOR THE MONTH OF DEC 2019, BILL NO-1532\n\n \n\n \n\n \n\n \n \n \n\n \n\n \n\n \n \n \n \n \n \n \n\nState Bank of india,\nState Bank of India, Buria\n\nPunjab National Bank, Sambalpur [PNB-1]\nPunjab National Bank, Kolkata {[PNB-2]\nUCO Bank, Hirakud\nUCO Bank, Sambalpur\n\n—\n\n \n \n \n \n \n\nes\neee\n\nReceived Payment Charge Account Checked by\n\n \n\nSignature Signature\n\x0c'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Gopal2002/CASH_AND_BANK_INVOICE")
# Run inference
preds = model("
")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:---------|:-----|
| Word count | 1 | 201.2534 | 4241 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 113 |
| 1 | 33 |
### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0023 | 1 | 0.3054 | - |
| 0.1142 | 50 | 0.1162 | - |
| 0.2283 | 100 | 0.0043 | - |
| 0.3425 | 150 | 0.0015 | - |
| 0.4566 | 200 | 0.0014 | - |
| 0.5708 | 250 | 0.0008 | - |
| 0.6849 | 300 | 0.0013 | - |
| 0.7991 | 350 | 0.001 | - |
| 0.9132 | 400 | 0.0004 | - |
| 1.0274 | 450 | 0.0008 | - |
| 1.1416 | 500 | 0.0008 | - |
| 1.2557 | 550 | 0.0011 | - |
| 1.3699 | 600 | 0.0008 | - |
| 1.4840 | 650 | 0.0007 | - |
| 1.5982 | 700 | 0.0005 | - |
| 1.7123 | 750 | 0.0005 | - |
| 1.8265 | 800 | 0.0007 | - |
| 1.9406 | 850 | 0.0005 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->