metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: "* 04 Hindalco Industries Ltd\nHirkaud Smelter Stores\n\n \n\n* Service Recei ot\nBUYER _ Lp / GATE ENRTY NO:\noe ADL D vA /2/0A\nRECEIPT DATE: 04-MAR-22 ATU\" ! : 1-SAMBALPUR\nUNIQUE ENTERPRISES ad ZL POL CPi pg 6 ee Q/748/2022\nASS Cer ag fe oO\nos \" -\n\n \n \n \n\nORG CODE:\n\nBOE NO:\nBOE DATE:\ncut\n\n \n\nTT\n\nWAY BILL AIRBILL NO\n\nPo\nSoe\nDATE:\n\nTOTAL RECEIVED 21074.8 Nes REMARKS/REFERENCE: | SUPPLY FOR PAINTING\nAMOUNT INCL TAX Reverse Charge: No ~\n\nINR) : Tax Point Basis : INVOICE\n\nPO Description SUPPLY FOR PAINTER FOR 85KA EMD\n\n \n\n \n \n \n\n \n \n \n \n\n \n \n \n\n \n \n \n \n\n \n \n \n\n \n \n\nLOCATOR\nShelf Life\nCONTROL\n\nQUANTITY:\nCHALAN/INVOICE\nRECEIVED\n\nQUANTITY:\nACCEPTED\nREJECTED\n\n \n\n \n\n \n \n\nITEM CODE DESCRIPTION HSN / SAC\nPR NUMBER SUB INVENTORY CODE\n\nPO NO. BU/cost Center/ Account Code along with GL ACCOUNT\n\nREQUESTER CODE\n\nNote to receiver\n\n1 - 801015110326 - HIRE: MANPOWER, SKILLED;RATE TYP:STANDARD, : MANDAY\nLVL/DSGNTN:PAINTER\n\n[=] = b07-\n\nS/PO/SRV/2122/054\n2\n\n- Sekhar, Mr.\nChandra Makthala\n\n \n \n\n: No Control\n\n \n \n\n \n \n \n\n- 3711.204.910103.50803112.9999.9999.9999.9999.9999\n- Hirakud Smelter Plant.Aluminium Smelter.Electrical.Repairs to\nMachinery- Electrical.Default.Default.Default.Default. Default\n\nP ruchasuil dG ~L— gw\n\n \n\n4atos- OF + 2622. .e, oer |\nPREPARER SECTION HEAD / INSPECTOR SECTION HEAD /\nSTORES KEEPER AREA HEAD -RECEIVING AREA HEAD — CUSTODY & ISSUE\nor\n\nals\n\f"
- text: " \n\n \n\nDELIVERY CHALLAN ~ Phone : (0891) 2577077 |\nALUFLUORIDE LIMITED\nMULAGADA VILLAGE, MINDHI POST,\nVISAKHAPATNAM - 530 012 |\n\n \n\n \n\n \n\n \n\n \n\n \n\n \n\n \n\n \n\nDc Nox: g22 - - : ; “Date 02-02-2016\n| HINDALCO INDUSTRIES LTD HIRAKUD\nSAMBALPUR\nODISHA\nPIN CODE: 768016\nYour Order No: ~HKDRM/1516/0001 DT: 01/04/2015\nReceived the below mentioned in good condition. Carrier No: AP 16 TC 9339\n—SI.No | ~~ PARTICULARS” | Qty. | Rate / MT\n: = | ae\n: 7\nALUMINIUM FLUORIDE . | 21.000 | ; sbatS\n|\n420 BagsX 50.120 kg. = 21.0504 MT |\nWeight of Emppty Bags:& Liners: 0.050 MT\nSoa Net Weight of Material: ~ 21.000 ~MT\nInvoice No.: 822 Date 02-02-2016\"\nAPVAT TIN : 37900106541 Dt: 02.06.2014 CST No.: 37900106541 Dt: 02.06.2014\nReceiver's Signature Signature\n\n \n\f"
- text: " \n\n \n\n \n\n \n\n \n\n \n\n| rad nas Bi Tiapz Ke en\nap | pa ape EE By EY ED ITT? ON matte / ON moray |\nP| airing swodanraa boc pia oe ne ed ee v , 4\n! e i ma | VeACLA Baus §uOQ souBisua¢ of\n| “P io | . [ | seBieUo IS | wal VY | Loo abi +A Buipe spun |\n| | fe) De [ nl oman «| OE U :\nmS, (Spe fb) to ae\n| eo Ss | | Pepe (GEOUVHO | GE SOF ae\nE 4 ’ : E sapesecascnsctute saps Ln + ad et an\nme | | a | es ' | xR Uag ob iw aa ae 32\n' a a] i as aN Ne paneer\nRe is pad on\n| ee | Sel Nmd Oe oy ld,\n| ix | ; | ‘lwnov L PP. ‘dg py\n| . Pe eh\n\n \n\nmo sory oR! wor,\n\nou d&- ane eer\n\n: \"ORL\n\n \n \n\n \n\n‘PO 0Es - “ay Sink /BUSIA,\n‘eyemfes eipug weayediueaewueyepsd JeaK\n\"UINYD BPISGG SE-’-S7Z ON 100G\n\nBu. NOUMIS BNDIOOS\n\ney\nWeve! se\n\n \n\n \n\nhceaitbaaor re\n\n! AMoaAM\n\n \n\n \n\n> tewe-3™\n\noy eee\n\nY3WOISH) Ad GAUNSNI SI ODUYO\n— MSIH S.HSNMO LY\n\nAdOD HONDIS. NOD\n\nene os roarans\n\n \n\nKINO NOMIC unr\n\nWaalarad Ta soz - ‘Sn\n\n \n\n- “eu = 3 re\n\neagaee\n\nGY oe Ae\n\nBA OFT OVI\nfoe, 17 :\n\n“OL\n\n \n\nivan OL.Givs) NOiAIOSaa\n\n \n\neT ea ‘ON aGOW\n\n \n\n \n\n(sour g) 9292 94924 920P : 181 600 OOF - IVAW angus Wi0l <\n‘OVOY OTIS .G 'Zy “.BSNOH X3dINI PVHIA. ¢°O\"H\n\n? tAd LHOdSNU 4! 88909 LVENS\n\n-_ wd\nfe\n\n»\n\f"
- text: "SOT Ue\n\n \n\n \n\noH\n\n| ia\n\nI\nod\n\nHi\n\na\n\n|\nTo) Sig Pere\na\n\nal |g\n&%\n5)\n\nwS\\\neB\nSB\n“5\n“O\nS\n€X\n\nBea\n\nem\n\nPe eS\n\nse aE a\n\n4 |] | tat [ety\n\ntt pe Ta\n&\na\n\nOK\n\n¢\n\nSRLS ia Leh coe\n\n \n \n\f"
- text: " \n \n \n \n\nAUSEOOUSRGSEEENSSRCESRORROGS\n\nMise oaeta\nMis tnaes Lo Q) duty at col ane\n\nDate 12.8820\n‘Stra Bort as Corry Ub 2.\n\nexeauscscotecne: aneasese\n\nMm. €.M. NBUSTRIES\n\nAn ISO 9001 : 2008 COMPANY\n\n“PODDAR COURT\", Phones : 2235 2096 / 3985 2494 Lo Wi. TEE OLL, a¥ahe Package Ae 2\natadiee Fax 033-2235 1868\n\nE-mail : [email protected] Tame Ahr SLM, Freight eng\n\n \n\nRaut WAR OKA O Van weg 9 at ai sl age Reve\nCorny u. )\n\nGABLES ARE IN GUR CONTROL\n\nFrease sign & return VAT No. : 19570720098 e TIN/ CST No. : 19570720292\n—~ = Office : 55, Ezra Street, 2nd Floor, Kolkata - 700 001\n\f"
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1
name: Accuracy
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Gopal2002/Material_Receipt_Report_ZEON")
# Run inference
preds = model("SOT Ue
oH
| ia
I
od
Hi
a
|
To) Sig Pere
a
al |g
&%
5)
wS\
eB
SB
“5
“O
S
€X
Bea
em
Pe eS
se aE a
4 |] | tat [ety
tt pe Ta
&
a
OK
¢
SRLS ia Leh coe
")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 182.1336 | 1108 |
Label | Training Sample Count |
---|---|
0 | 202 |
1 | 45 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0007 | 1 | 0.2952 | - |
0.0371 | 50 | 0.2253 | - |
0.0742 | 100 | 0.1234 | - |
0.1114 | 150 | 0.0115 | - |
0.1485 | 200 | 0.0036 | - |
0.1856 | 250 | 0.0024 | - |
0.2227 | 300 | 0.0015 | - |
0.2598 | 350 | 0.0011 | - |
0.2970 | 400 | 0.0009 | - |
0.3341 | 450 | 0.0007 | - |
0.3712 | 500 | 0.0011 | - |
0.4083 | 550 | 0.0008 | - |
0.4454 | 600 | 0.0008 | - |
0.4826 | 650 | 0.0007 | - |
0.5197 | 700 | 0.0005 | - |
0.5568 | 750 | 0.0006 | - |
0.5939 | 800 | 0.0005 | - |
0.6310 | 850 | 0.0005 | - |
0.6682 | 900 | 0.0004 | - |
0.7053 | 950 | 0.0003 | - |
0.7424 | 1000 | 0.0004 | - |
0.7795 | 1050 | 0.0005 | - |
0.8166 | 1100 | 0.0004 | - |
0.8537 | 1150 | 0.0004 | - |
0.8909 | 1200 | 0.0005 | - |
0.9280 | 1250 | 0.0004 | - |
0.9651 | 1300 | 0.0003 | - |
1.0022 | 1350 | 0.0003 | - |
1.0393 | 1400 | 0.0003 | - |
1.0765 | 1450 | 0.0004 | - |
1.1136 | 1500 | 0.0003 | - |
1.1507 | 1550 | 0.0004 | - |
1.1878 | 1600 | 0.0004 | - |
1.2249 | 1650 | 0.0004 | - |
1.2621 | 1700 | 0.0003 | - |
1.2992 | 1750 | 0.0003 | - |
1.3363 | 1800 | 0.0003 | - |
1.3734 | 1850 | 0.0003 | - |
1.4105 | 1900 | 0.0003 | - |
1.4477 | 1950 | 0.0002 | - |
1.4848 | 2000 | 0.0003 | - |
1.5219 | 2050 | 0.0003 | - |
1.5590 | 2100 | 0.0003 | - |
1.5961 | 2150 | 0.0002 | - |
1.6333 | 2200 | 0.0003 | - |
1.6704 | 2250 | 0.0004 | - |
1.7075 | 2300 | 0.0004 | - |
1.7446 | 2350 | 0.0003 | - |
1.7817 | 2400 | 0.0002 | - |
1.8189 | 2450 | 0.0002 | - |
1.8560 | 2500 | 0.0003 | - |
1.8931 | 2550 | 0.0002 | - |
1.9302 | 2600 | 0.0003 | - |
1.9673 | 2650 | 0.0003 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}