Gregorig's picture
microsoft/deberta-v3-base-finetuned-emo_une
bc0b1c6 verified
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: deberta-v3-base-finetuned-emo_une
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-base-finetuned-emo_une
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4500
- Accuracy: 0.865
- F1: 0.8681
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.68 | 1.0 | 26 | 0.6269 | 0.585 | 0.6107 |
| 0.5312 | 2.0 | 52 | 0.4552 | 0.86 | 0.8578 |
| 0.3854 | 3.0 | 78 | 0.4478 | 0.84 | 0.8441 |
| 0.3005 | 4.0 | 104 | 0.4395 | 0.86 | 0.8644 |
| 0.258 | 5.0 | 130 | 0.4500 | 0.865 | 0.8681 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Tokenizers 0.19.1