GuCuChiara's picture
Training complete
be1bcda
metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NLP-CIC-WFU_DisTEMIST_fine_tuned_bert-base-multilingual-cased
    results: []

NLP-CIC-WFU_DisTEMIST_fine_tuned_bert-base-multilingual-cased

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1620
  • Precision: 0.6121
  • Recall: 0.5161
  • F1: 0.5600
  • Accuracy: 0.9541

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 0.1704 0.4558 0.3635 0.4045 0.9353
No log 2.0 142 0.1572 0.5925 0.3518 0.4415 0.9433
No log 3.0 213 0.1386 0.5932 0.4774 0.5290 0.9531
No log 4.0 284 0.1427 0.5945 0.5175 0.5534 0.9533
No log 5.0 355 0.1653 0.6354 0.4788 0.5461 0.9540
No log 6.0 426 0.1620 0.6121 0.5161 0.5600 0.9541

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1