distilroberta-base-finetuned-ner-lenerBr-preprocessed
This model is a fine-tuned version of distilbert/distilroberta-base on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: 0.1528
- Precision: 0.8137
- Recall: 0.8476
- F1: 0.8303
- Accuracy: 0.9690
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 490 | 0.2081 | 0.6711 | 0.6131 | 0.6408 | 0.9372 |
0.3268 | 2.0 | 980 | 0.1617 | 0.6739 | 0.7934 | 0.7288 | 0.9507 |
0.1072 | 3.0 | 1470 | 0.1558 | 0.7132 | 0.7978 | 0.7531 | 0.9557 |
0.0618 | 4.0 | 1960 | 0.1463 | 0.7468 | 0.8163 | 0.7800 | 0.9619 |
0.0434 | 5.0 | 2450 | 0.1472 | 0.7617 | 0.8324 | 0.7955 | 0.9646 |
0.0312 | 6.0 | 2940 | 0.1544 | 0.7761 | 0.8394 | 0.8065 | 0.9642 |
0.0237 | 7.0 | 3430 | 0.1527 | 0.7881 | 0.8415 | 0.8139 | 0.9666 |
0.0203 | 8.0 | 3920 | 0.1524 | 0.8087 | 0.8451 | 0.8265 | 0.9690 |
0.0162 | 9.0 | 4410 | 0.1517 | 0.8062 | 0.8462 | 0.8258 | 0.9691 |
0.0125 | 10.0 | 4900 | 0.1528 | 0.8137 | 0.8476 | 0.8303 | 0.9690 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for GuiTap/distilroberta-base-finetuned-ner-lenerBr-preprocessed
Base model
distilbert/distilroberta-baseDataset used to train GuiTap/distilroberta-base-finetuned-ner-lenerBr-preprocessed
Evaluation results
- Precision on lener_brvalidation set self-reported0.814
- Recall on lener_brvalidation set self-reported0.848
- F1 on lener_brvalidation set self-reported0.830
- Accuracy on lener_brvalidation set self-reported0.969