Edit model card

distilroberta-base-finetuned-ner-lenerBr-preprocessed

This model is a fine-tuned version of distilbert/distilroberta-base on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1528
  • Precision: 0.8137
  • Recall: 0.8476
  • F1: 0.8303
  • Accuracy: 0.9690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 490 0.2081 0.6711 0.6131 0.6408 0.9372
0.3268 2.0 980 0.1617 0.6739 0.7934 0.7288 0.9507
0.1072 3.0 1470 0.1558 0.7132 0.7978 0.7531 0.9557
0.0618 4.0 1960 0.1463 0.7468 0.8163 0.7800 0.9619
0.0434 5.0 2450 0.1472 0.7617 0.8324 0.7955 0.9646
0.0312 6.0 2940 0.1544 0.7761 0.8394 0.8065 0.9642
0.0237 7.0 3430 0.1527 0.7881 0.8415 0.8139 0.9666
0.0203 8.0 3920 0.1524 0.8087 0.8451 0.8265 0.9690
0.0162 9.0 4410 0.1517 0.8062 0.8462 0.8258 0.9691
0.0125 10.0 4900 0.1528 0.8137 0.8476 0.8303 0.9690

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
81.5M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for GuiTap/distilroberta-base-finetuned-ner-lenerBr-preprocessed

Finetuned
(522)
this model

Dataset used to train GuiTap/distilroberta-base-finetuned-ner-lenerBr-preprocessed

Evaluation results