See axolotl config
axolotl version: 0.4.1
base_model: NousResearch/Hermes-3-Llama-3.1-70B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: llama3
datasets:
- path: Guilherme34/Reasoner-Dataset-roles-format
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
roles:
system:
- system
user:
- user
assistant:
- assistant
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/lora-out
This model is a fine-tuned version of NousResearch/Hermes-3-Llama-3.1-70B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6269
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4145 | 0.0833 | 1 | 1.3638 |
1.4133 | 0.25 | 3 | 1.3479 |
1.1718 | 0.5 | 6 | 1.0840 |
0.8807 | 0.75 | 9 | 0.8536 |
0.7696 | 1.0 | 12 | 0.7617 |
0.5582 | 1.25 | 15 | 0.7075 |
0.5734 | 1.5 | 18 | 0.6850 |
0.5593 | 1.75 | 21 | 0.6519 |
0.5131 | 2.0 | 24 | 0.6315 |
0.4138 | 2.25 | 27 | 0.6263 |
0.3607 | 2.5 | 30 | 0.6266 |
0.3951 | 2.75 | 33 | 0.6272 |
0.345 | 3.0 | 36 | 0.6269 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 7
Model tree for Guilherme34/Reasoner-Hermes3-70b-Lora
Base model
meta-llama/Llama-3.1-70B
Finetuned
NousResearch/Hermes-3-Llama-3.1-70B