Edit model card

wav2vec2-E50_speed

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7201
  • Cer: 34.5747

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
38.2863 0.1289 200 4.9788 100.0
4.8884 0.2579 400 4.7635 100.0
4.7532 0.3868 600 4.6460 100.0
4.7285 0.5158 800 4.6380 100.0
4.6656 0.6447 1000 4.6877 100.0
4.6484 0.7737 1200 4.6586 100.0
4.6328 0.9026 1400 4.6110 100.0
4.5589 1.0316 1600 4.5007 100.0
4.4938 1.1605 1800 4.4103 98.0557
4.3191 1.2895 2000 4.2620 95.5768
3.9702 1.4184 2200 3.6438 68.0099
3.3814 1.5474 2400 3.1348 60.4323
2.9655 1.6763 2600 2.9093 59.5865
2.7274 1.8053 2800 2.5505 51.1396
2.5117 1.9342 3000 2.2604 46.0644
2.3308 2.0632 3200 2.0918 42.4871
2.1864 2.1921 3400 2.0284 41.0832
2.0692 2.3211 3600 1.9906 40.9774
2.0208 2.4500 3800 1.9112 38.6278
1.9439 2.5790 4000 1.8649 38.3870
1.8928 2.7079 4200 1.7703 35.7789
1.8225 2.8369 4400 1.7312 34.8508
1.8341 2.9658 4600 1.7201 34.5747

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
25
Safetensors
Model size
317M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-E50_speed

Finetuned
(439)
this model