Gunslinger3D's picture
fine-tuning-Phi2-with-webglm-qa-with-lora_2
c0ccf35 verified
|
raw
history blame
6.54 kB
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: fine-tuning-Phi2-with-webglm-qa-with-lora_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tuning-Phi2-with-webglm-qa-with-lora_2
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0749
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.2 | 10 | 8.2244 |
| No log | 0.4 | 20 | 7.4785 |
| No log | 0.6 | 30 | 5.5477 |
| No log | 0.8 | 40 | 2.9270 |
| 5.8579 | 1.0 | 50 | 0.6602 |
| 5.8579 | 1.2 | 60 | 0.5707 |
| 5.8579 | 1.39 | 70 | 0.5056 |
| 5.8579 | 1.59 | 80 | 0.4537 |
| 5.8579 | 1.79 | 90 | 0.4048 |
| 0.4258 | 1.99 | 100 | 0.3539 |
| 0.4258 | 2.19 | 110 | 0.3117 |
| 0.4258 | 2.39 | 120 | 0.2848 |
| 0.4258 | 2.59 | 130 | 0.2589 |
| 0.4258 | 2.79 | 140 | 0.2344 |
| 0.2253 | 2.99 | 150 | 0.2160 |
| 0.2253 | 3.19 | 160 | 0.2037 |
| 0.2253 | 3.39 | 170 | 0.1890 |
| 0.2253 | 3.59 | 180 | 0.1794 |
| 0.2253 | 3.78 | 190 | 0.1695 |
| 0.1573 | 3.98 | 200 | 0.1607 |
| 0.1573 | 4.18 | 210 | 0.1544 |
| 0.1573 | 4.38 | 220 | 0.1518 |
| 0.1573 | 4.58 | 230 | 0.1441 |
| 0.1573 | 4.78 | 240 | 0.1365 |
| 0.1251 | 4.98 | 250 | 0.1302 |
| 0.1251 | 5.18 | 260 | 0.1286 |
| 0.1251 | 5.38 | 270 | 0.1258 |
| 0.1251 | 5.58 | 280 | 0.1228 |
| 0.1251 | 5.78 | 290 | 0.1203 |
| 0.1059 | 5.98 | 300 | 0.1159 |
| 0.1059 | 6.18 | 310 | 0.1116 |
| 0.1059 | 6.37 | 320 | 0.1112 |
| 0.1059 | 6.57 | 330 | 0.1092 |
| 0.1059 | 6.77 | 340 | 0.1046 |
| 0.0905 | 6.97 | 350 | 0.1032 |
| 0.0905 | 7.17 | 360 | 0.1028 |
| 0.0905 | 7.37 | 370 | 0.1005 |
| 0.0905 | 7.57 | 380 | 0.1011 |
| 0.0905 | 7.77 | 390 | 0.0991 |
| 0.0816 | 7.97 | 400 | 0.0973 |
| 0.0816 | 8.17 | 410 | 0.0965 |
| 0.0816 | 8.37 | 420 | 0.0954 |
| 0.0816 | 8.57 | 430 | 0.0949 |
| 0.0816 | 8.76 | 440 | 0.0938 |
| 0.0722 | 8.96 | 450 | 0.0915 |
| 0.0722 | 9.16 | 460 | 0.0907 |
| 0.0722 | 9.36 | 470 | 0.0900 |
| 0.0722 | 9.56 | 480 | 0.0893 |
| 0.0722 | 9.76 | 490 | 0.0877 |
| 0.0656 | 9.96 | 500 | 0.0872 |
| 0.0656 | 10.16 | 510 | 0.0868 |
| 0.0656 | 10.36 | 520 | 0.0867 |
| 0.0656 | 10.56 | 530 | 0.0874 |
| 0.0656 | 10.76 | 540 | 0.0863 |
| 0.0614 | 10.96 | 550 | 0.0849 |
| 0.0614 | 11.16 | 560 | 0.0834 |
| 0.0614 | 11.35 | 570 | 0.0829 |
| 0.0614 | 11.55 | 580 | 0.0827 |
| 0.0614 | 11.75 | 590 | 0.0817 |
| 0.0553 | 11.95 | 600 | 0.0817 |
| 0.0553 | 12.15 | 610 | 0.0824 |
| 0.0553 | 12.35 | 620 | 0.0826 |
| 0.0553 | 12.55 | 630 | 0.0810 |
| 0.0553 | 12.75 | 640 | 0.0814 |
| 0.053 | 12.95 | 650 | 0.0804 |
| 0.053 | 13.15 | 660 | 0.0807 |
| 0.053 | 13.35 | 670 | 0.0792 |
| 0.053 | 13.55 | 680 | 0.0792 |
| 0.053 | 13.75 | 690 | 0.0792 |
| 0.0495 | 13.94 | 700 | 0.0788 |
| 0.0495 | 14.14 | 710 | 0.0783 |
| 0.0495 | 14.34 | 720 | 0.0784 |
| 0.0495 | 14.54 | 730 | 0.0779 |
| 0.0495 | 14.74 | 740 | 0.0776 |
| 0.0477 | 14.94 | 750 | 0.0773 |
| 0.0477 | 15.14 | 760 | 0.0787 |
| 0.0477 | 15.34 | 770 | 0.0772 |
| 0.0477 | 15.54 | 780 | 0.0763 |
| 0.0477 | 15.74 | 790 | 0.0759 |
| 0.0456 | 15.94 | 800 | 0.0766 |
| 0.0456 | 16.14 | 810 | 0.0770 |
| 0.0456 | 16.33 | 820 | 0.0774 |
| 0.0456 | 16.53 | 830 | 0.0770 |
| 0.0456 | 16.73 | 840 | 0.0764 |
| 0.0438 | 16.93 | 850 | 0.0754 |
| 0.0438 | 17.13 | 860 | 0.0759 |
| 0.0438 | 17.33 | 870 | 0.0762 |
| 0.0438 | 17.53 | 880 | 0.0758 |
| 0.0438 | 17.73 | 890 | 0.0761 |
| 0.0415 | 17.93 | 900 | 0.0758 |
| 0.0415 | 18.13 | 910 | 0.0754 |
| 0.0415 | 18.33 | 920 | 0.0754 |
| 0.0415 | 18.53 | 930 | 0.0753 |
| 0.0415 | 18.73 | 940 | 0.0751 |
| 0.0408 | 18.92 | 950 | 0.0752 |
| 0.0408 | 19.12 | 960 | 0.0750 |
| 0.0408 | 19.32 | 970 | 0.0749 |
| 0.0408 | 19.52 | 980 | 0.0749 |
| 0.0408 | 19.72 | 990 | 0.0749 |
| 0.0403 | 19.92 | 1000 | 0.0749 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0