Gunslinger3D's picture
fine-tuning-Phi2-with-webglm-qa-with-lora_6
ab34f26 verified
|
raw
history blame
2.71 kB
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: microsoft/phi-2
model-index:
  - name: fine-tuning-Phi2-with-webglm-qa-with-lora_6
    results: []

fine-tuning-Phi2-with-webglm-qa-with-lora_6

This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1212

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 60
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
7.3419 0.31 20 6.2616
4.0421 0.63 40 0.8963
0.6465 0.94 60 0.5726
0.4575 1.26 80 0.3999
0.309 1.57 100 0.3044
0.2531 1.89 120 0.2605
0.2235 2.2 140 0.2273
0.1922 2.52 160 0.2091
0.1793 2.83 180 0.1858
0.1488 3.14 200 0.1734
0.16 3.46 220 0.1646
0.1497 3.77 240 0.1557
0.1336 4.09 260 0.1489
0.1278 4.4 280 0.1415
0.1291 4.72 300 0.1392
0.1244 5.03 320 0.1342
0.1184 5.35 340 0.1319
0.118 5.66 360 0.1289
0.1153 5.97 380 0.1279
0.1052 6.29 400 0.1250
0.1058 6.6 420 0.1243
0.1142 6.92 440 0.1226
0.1026 7.23 460 0.1222
0.1051 7.55 480 0.1214
0.0977 7.86 500 0.1212

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0