Gunslinger3D's picture
fine-tuning-Phi2-with-webglm-qa-with-lora_8
74e46ad verified
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: microsoft/phi-2
model-index:
  - name: fine-tuning-Phi2-with-webglm-qa-with-lora_8
    results: []

fine-tuning-Phi2-with-webglm-qa-with-lora_8

This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0935

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 60
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
7.1823 0.31 20 6.1082
4.0 0.63 40 0.9863
0.7159 0.94 60 0.6293
0.4994 1.26 80 0.4239
0.3187 1.57 100 0.3044
0.251 1.89 120 0.2567
0.2189 2.2 140 0.2206
0.1869 2.52 160 0.2000
0.1741 2.83 180 0.1781
0.1439 3.14 200 0.1638
0.1543 3.46 220 0.1550
0.1428 3.77 240 0.1455
0.127 4.09 260 0.1394
0.1206 4.4 280 0.1314
0.1206 4.72 300 0.1298
0.1162 5.03 320 0.1246
0.109 5.35 340 0.1235
0.1088 5.66 360 0.1190
0.1062 5.97 380 0.1157
0.0938 6.29 400 0.1146
0.0945 6.6 420 0.1133
0.1012 6.92 440 0.1105
0.0881 7.23 460 0.1109
0.0897 7.55 480 0.1091
0.0837 7.86 500 0.1060
0.0899 8.18 520 0.1051
0.0803 8.49 540 0.1041
0.0792 8.81 560 0.1021
0.0885 9.12 580 0.1000
0.0844 9.43 600 0.1004
0.0704 9.75 620 0.0992
0.0681 10.06 640 0.0994
0.0727 10.38 660 0.0977
0.0712 10.69 680 0.0970
0.073 11.01 700 0.0971
0.0683 11.32 720 0.0974
0.0682 11.64 740 0.0964
0.0716 11.95 760 0.0962
0.0645 12.26 780 0.0948
0.0662 12.58 800 0.0947
0.0677 12.89 820 0.0947
0.0626 13.21 840 0.0953
0.0628 13.52 860 0.0946
0.0642 13.84 880 0.0937
0.0641 14.15 900 0.0939
0.0587 14.47 920 0.0939
0.0664 14.78 940 0.0933
0.061 15.09 960 0.0931
0.0596 15.41 980 0.0934
0.0646 15.72 1000 0.0935

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0