fine-tuning-Phi2-with-webglm-qa-with-lora_9
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1781
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 60
- training_steps: 700
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9045 | 0.16 | 10 | 1.6827 |
1.6798 | 0.32 | 20 | 1.5996 |
1.5222 | 0.48 | 30 | 1.4548 |
1.286 | 0.64 | 40 | 1.2269 |
1.0827 | 0.8 | 50 | 1.1089 |
0.9913 | 0.96 | 60 | 1.0021 |
0.881 | 1.13 | 70 | 0.8796 |
0.7673 | 1.29 | 80 | 0.7637 |
0.6315 | 1.45 | 90 | 0.6618 |
0.554 | 1.61 | 100 | 0.5964 |
0.5132 | 1.77 | 110 | 0.5487 |
0.4915 | 1.93 | 120 | 0.5030 |
0.4787 | 2.09 | 130 | 0.4705 |
0.4298 | 2.25 | 140 | 0.4451 |
0.4009 | 2.41 | 150 | 0.4099 |
0.3886 | 2.57 | 160 | 0.3889 |
0.3729 | 2.73 | 170 | 0.3674 |
0.3236 | 2.89 | 180 | 0.3527 |
0.3377 | 3.05 | 190 | 0.3407 |
0.3356 | 3.22 | 200 | 0.3261 |
0.3083 | 3.38 | 210 | 0.3121 |
0.2794 | 3.54 | 220 | 0.2992 |
0.2917 | 3.7 | 230 | 0.2926 |
0.2895 | 3.86 | 240 | 0.2879 |
0.2764 | 4.02 | 250 | 0.2782 |
0.2585 | 4.18 | 260 | 0.2732 |
0.2489 | 4.34 | 270 | 0.2678 |
0.2401 | 4.5 | 280 | 0.2591 |
0.2489 | 4.66 | 290 | 0.2573 |
0.2529 | 4.82 | 300 | 0.2501 |
0.2637 | 4.98 | 310 | 0.2455 |
0.255 | 5.14 | 320 | 0.2411 |
0.2266 | 5.31 | 330 | 0.2370 |
0.2209 | 5.47 | 340 | 0.2326 |
0.2311 | 5.63 | 350 | 0.2276 |
0.2203 | 5.79 | 360 | 0.2275 |
0.2048 | 5.95 | 370 | 0.2210 |
0.2133 | 6.11 | 380 | 0.2179 |
0.2045 | 6.27 | 390 | 0.2142 |
0.2053 | 6.43 | 400 | 0.2137 |
0.1898 | 6.59 | 410 | 0.2102 |
0.1897 | 6.75 | 420 | 0.2073 |
0.2141 | 6.91 | 430 | 0.2040 |
0.1872 | 7.07 | 440 | 0.2028 |
0.1938 | 7.23 | 450 | 0.1998 |
0.187 | 7.4 | 460 | 0.2004 |
0.1782 | 7.56 | 470 | 0.1973 |
0.1908 | 7.72 | 480 | 0.1967 |
0.1899 | 7.88 | 490 | 0.1912 |
0.1823 | 8.04 | 500 | 0.1912 |
0.1769 | 8.2 | 510 | 0.1915 |
0.1774 | 8.36 | 520 | 0.1909 |
0.1793 | 8.52 | 530 | 0.1890 |
0.1853 | 8.68 | 540 | 0.1880 |
0.1785 | 8.84 | 550 | 0.1861 |
0.1515 | 9.0 | 560 | 0.1845 |
0.1689 | 9.16 | 570 | 0.1845 |
0.1552 | 9.32 | 580 | 0.1836 |
0.1712 | 9.49 | 590 | 0.1828 |
0.1642 | 9.65 | 600 | 0.1818 |
0.1703 | 9.81 | 610 | 0.1806 |
0.1772 | 9.97 | 620 | 0.1804 |
0.1615 | 10.13 | 630 | 0.1796 |
0.1494 | 10.29 | 640 | 0.1801 |
0.1702 | 10.45 | 650 | 0.1798 |
0.1656 | 10.61 | 660 | 0.1787 |
0.1688 | 10.77 | 670 | 0.1782 |
0.1452 | 10.93 | 680 | 0.1780 |
0.1732 | 11.09 | 690 | 0.1782 |
0.1719 | 11.25 | 700 | 0.1781 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 1
Model tree for Gunslinger3D/fine-tuning-Phi2-with-webglm-qa-with-lora_9
Base model
microsoft/phi-2