|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
base_model: albert-base-v2
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- conll2003
|
|
metrics:
|
|
- precision
|
|
- recall
|
|
- f1
|
|
- accuracy
|
|
model-index:
|
|
- name: albert-finetuned-ner-gbgb
|
|
results:
|
|
- task:
|
|
name: Token Classification
|
|
type: token-classification
|
|
dataset:
|
|
name: conll2003
|
|
type: conll2003
|
|
config: conll2003
|
|
split: validation
|
|
args: conll2003
|
|
metrics:
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.5032151387102701
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.46095590710198586
|
|
- name: F1
|
|
type: f1
|
|
value: 0.4811594202898551
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.8898127980220168
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# albert-finetuned-ner-gbgb
|
|
|
|
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.3371
|
|
- Precision: 0.5032
|
|
- Recall: 0.4610
|
|
- F1: 0.4812
|
|
- Accuracy: 0.8898
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 2e-05
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 3
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
|
| 0.5379 | 1.0 | 1756 | 0.4843 | 0.4079 | 0.2740 | 0.3278 | 0.8502 |
|
|
| 0.3491 | 2.0 | 3512 | 0.3726 | 0.4903 | 0.3837 | 0.4305 | 0.8778 |
|
|
| 0.26 | 3.0 | 5268 | 0.3371 | 0.5032 | 0.4610 | 0.4812 | 0.8898 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.46.1
|
|
- Pytorch 2.5.1+cpu
|
|
- Datasets 3.1.0
|
|
- Tokenizers 0.20.2
|
|
|