Edit model card

dialogue-bart-large-chinese

This is a seq2seq model pre-trained on several Chinese dialogue datasets, from bart-large-chinese. It's better to fine-tune it on downstream tasks for better performance.

Spaces

Now you can experience our model on HuggingFace Spaces HIT-TMG/dialogue-bart-large-chinese .

Datasets

We utilize 4 Chinese dialogue datasets from LUGE .

Count Domain
Chinese Persona Chat (CPC) 23,000 Open
LCCC 11,987,759 Open
Emotional STC (ESTC) 899,207 Open
KdConv 3,000 Movie, Music, Travel

Data format

Input: [CLS] 对话历史:<history> [SEP] 知识:<knowledge> [SEP]

Output: [CLS] <response> [SEP]

Example

from transformers import BertTokenizer, BartForConditionalGeneration

# Note that tokenizer is an object of BertTokenizer, instead of BartTokenizer
tokenizer = BertTokenizer.from_pretrained("HIT-TMG/dialogue-bart-large-chinese")
model = BartForConditionalGeneration.from_pretrained("HIT-TMG/dialogue-bart-large-chinese")

# an example from CPC dev data
history = ["可以 认识 一下 吗 ?", "当然 可以 啦 , 你好 。", "嘿嘿 你好 , 请问 你 最近 在 忙 什么 呢 ?", "我 最近 养 了 一只 狗狗 , 我 在 训练 它 呢 。"]
history_str = "对话历史:" + tokenizer.sep_token.join(history)
input_ids = tokenizer(history_str, return_tensors='pt').input_ids
output_ids = model.generate(input_ids)[0]
print(tokenizer.decode(output_ids, skip_special_tokens=True))

Contact

If you encounter any issue, feel free to contact us via the email: [email protected]

Downloads last month
51
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train HIT-TMG/dialogue-bart-large-chinese

Spaces using HIT-TMG/dialogue-bart-large-chinese 2