Edit model card

mT5 small spanish es

This is a Spanish fine-tuned version of Google's mT5-small model.

    https://huggingface.co/google/mt5-small

Datasets

The datasets used for the fine-tuning

    Task                                    Prefix
    Multinli (English)                      multi nli premise:[Text]  hypo:[Text]
    Multinli (Spanish)                      multi nli premise:[Text]  hypo:[Text]
    Pawx (English)                          pawx sentence1:[Text] sentence2:[Text]
    Pawx (Spanish)                          pawx sentence1:[Text] sentence2:[Text]
    Squad (English)                         question:[Text] context:[Text]
    Squad (Spanish)                         question:[Text] context:[Text]
    Translations (English-Spanish)          translate English to Spanish:[Text]
    Translations (Spanish-English)          translate Spanish to English:[Text]

Inference

The following piece of code could be used to perfome the different model tasks.

Translations

    from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
    
    model_name = "HURIDOCS/mt5-small-spanish-es"
    
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    
    task = "translate Spanish to English:Esta frase es para probar el modelo"
    input_ids = tokenizer(
        [task],
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=512
    )["input_ids"]
    
    output_ids = model.generate(
        input_ids=input_ids,
        max_length=84,
        no_repeat_ngram_size=2,
        num_beams=4
    )[0]
    
    result_text = tokenizer.decode(
        output_ids,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )
    
    print(result_text)

Question answering

    from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
    
    model_name = "HURIDOCS/mt5-small-spanish-es"
    
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    
    task = '''question:En qué país se encuentra Normandía? context:Los normandos (normandos: Nourmann; Francés: Normandos; Normanni) 
    fue el pueblo que en los siglos X y XI dio su nombre a Normandía, una región de Francia. 
    Eran descendientes de invasores nórdicos ('normandos" viene de "Norseman") y piratas de Dinamarca, Islandia y Noruega que, 
    bajo su líder Rollo, acordaron jurar lealtad al rey Carlos III de Francia Occidental. A través de generaciones de asimilación 
    y mezcla con las poblaciones nativas francas y galas romanas, sus descendientes se fusionarían gradualmente con las culturas 
    carolingias de Francia Occidental. La identidad cultural y étnica distintiva de los normandos surgió inicialmente en la 
    primera mitad del siglo X, y continuó evolucionando durante los siglos siguientes.'''

    input_ids = tokenizer(
        [task],
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=512
    )["input_ids"]
    
    output_ids = model.generate(
        input_ids=input_ids,
        max_length=84,
        no_repeat_ngram_size=2,
        num_beams=4
    )[0]
    
    result_text = tokenizer.decode(
        output_ids,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )
    
    print(result_text)

Fine-tuning

Check out the Transformers Libray examples

https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering

Performance

Spanish SQuAD v2 512 tokens

              Model                                            Exact match     F1
    rank 1    mrm8488/distill-bert-base-spanish-wwm-cased      50.43%          71.45%
    rank 2    **mT5 small spanish es**                         48.35%          62.03%
    rank 3    flan-t5-small                                    41.44%          56.48%
Downloads last month
370
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.