Edit model card

BitLlama2-jp-127M-optim-4

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4021

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0024
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
6.8073 0.07 200 4.8769
4.5389 0.15 400 4.3762
4.2297 0.22 600 4.1527
4.0242 0.29 800 3.9881
3.8902 0.36 1000 3.8885
3.7927 0.44 1200 3.8047
3.7141 0.51 1400 3.7333
3.6597 0.58 1600 3.6681
3.579 0.66 1800 3.6041
3.5141 0.73 2000 3.5424
3.4606 0.8 2200 3.4941
3.4116 0.88 2400 3.4467
3.361 0.95 2600 3.4021

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
128M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.