Ham1mad1's picture
End of training
dfb4b5e verified
|
raw
history blame
4.34 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-Vsl-Lab-PC-V7
    results: []

videomae-base-Vsl-Lab-PC-V7

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1302
  • Accuracy: 0.8326

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2342 0.02 81 1.2321 0.7854
0.134 1.02 162 1.1259 0.8112
0.0524 2.02 243 1.2486 0.7768
0.0214 3.02 324 1.2101 0.8155
0.0607 4.02 405 1.3376 0.7897
0.0624 5.02 486 1.4538 0.7811
0.013 6.02 567 1.4118 0.7854
0.0545 7.02 648 1.8297 0.7511
0.0834 8.02 729 1.2903 0.7897
0.0261 9.02 810 1.3051 0.7983
0.1063 10.02 891 1.3785 0.7725
0.0011 11.02 972 1.3544 0.7940
0.0002 12.02 1053 1.1987 0.8326
0.0001 13.02 1134 1.1977 0.8283
0.0001 14.02 1215 1.1963 0.8326
0.0001 15.02 1296 1.1962 0.8326
0.0001 16.02 1377 1.1868 0.8369
0.0001 17.02 1458 1.0947 0.8326
0.0001 18.02 1539 1.1421 0.8283
0.007 19.02 1620 1.3070 0.7854
0.0001 20.02 1701 1.1657 0.8155
0.0001 21.02 1782 1.1627 0.8112
0.0001 22.02 1863 1.1432 0.8197
0.0001 23.02 1944 1.1271 0.8155
0.0001 24.02 2025 1.1188 0.8283
0.0957 25.02 2106 1.2623 0.8155
0.0001 26.02 2187 1.0093 0.8498
0.0001 27.02 2268 1.0397 0.8498
0.0001 28.02 2349 1.0425 0.8498
0.0001 29.02 2430 1.0113 0.8369
0.0001 30.02 2511 1.0144 0.8369
0.0001 31.02 2592 1.0132 0.8369
0.0001 32.02 2673 1.0325 0.8326
0.0321 33.02 2754 1.1152 0.8283
0.0001 34.02 2835 1.1767 0.8069
0.0001 35.02 2916 1.1709 0.8112
0.0001 36.02 2997 1.1632 0.8155
0.0001 37.02 3078 1.1567 0.8197
0.0001 38.02 3159 1.1511 0.8197
0.0001 39.02 3240 1.1263 0.8283
0.0001 40.02 3321 1.1233 0.8283
0.0001 41.02 3402 1.1222 0.8326
0.0001 42.02 3483 1.1212 0.8283
0.0001 43.02 3564 1.1206 0.8283
0.0001 44.02 3645 1.1200 0.8283
0.0001 45.02 3726 1.1197 0.8283
0.0001 46.02 3807 1.1243 0.8283
0.0001 47.02 3888 1.1303 0.8326
0.0001 48.02 3969 1.1302 0.8326
0.0001 49.01 4000 1.1302 0.8326

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2