results / README.md
HamdanXI's picture
HamdanXI/w2v2_uclass_clipped_10_seconds_fb_labeled_v2
ec3c846 verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6006
  • Accuracy: 0.5153
  • F1 Score Class 0: 0.0
  • F1 Score Class 1: 0.0
  • F1 Score Class 2: 0.0
  • F1 Score Class 3: 0.0
  • F1 Score Class 4: 0.0
  • F1 Score Class 5: 0.0
  • F1 Score Class 6: 0.0
  • F1 Score Class 7: 0.6801
  • F1 Score Class 8: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score Class 0 F1 Score Class 1 F1 Score Class 2 F1 Score Class 3 F1 Score Class 4 F1 Score Class 5 F1 Score Class 6 F1 Score Class 7 F1 Score Class 8
1.506 1.0 533 1.6378 0.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6801 0.0
1.4754 2.0 1066 1.6081 0.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6801 0.0
1.5661 3.0 1599 1.6086 0.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6801 0.0
1.5656 4.0 2132 1.6012 0.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6801 0.0
1.6768 5.0 2665 1.6281 0.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6801 0.0
1.6289 6.0 3198 1.6011 0.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6801 0.0
1.4727 7.0 3731 1.6015 0.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6801 0.0
1.5386 8.0 4264 1.6054 0.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6801 0.0
1.5436 9.0 4797 1.6020 0.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6801 0.0
1.4974 10.0 5330 1.6006 0.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6801 0.0

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1