metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 1.2924
- Wer: 0.7201
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 200.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
11.2783 | 4.17 | 100 | 4.6409 | 1.0 |
3.5578 | 8.33 | 200 | 3.1649 | 1.0 |
3.1279 | 12.5 | 300 | 3.0335 | 1.0 |
2.9944 | 16.67 | 400 | 2.9526 | 0.9983 |
2.9275 | 20.83 | 500 | 2.9291 | 1.0009 |
2.8077 | 25.0 | 600 | 2.5633 | 0.9895 |
2.4438 | 29.17 | 700 | 1.9045 | 0.9564 |
1.9659 | 33.33 | 800 | 1.4114 | 0.7960 |
1.7092 | 37.5 | 900 | 1.2584 | 0.7637 |
1.517 | 41.67 | 1000 | 1.2040 | 0.7507 |
1.3966 | 45.83 | 1100 | 1.1273 | 0.7463 |
1.3197 | 50.0 | 1200 | 1.1054 | 0.6957 |
1.2476 | 54.17 | 1300 | 1.1035 | 0.7001 |
1.1796 | 58.33 | 1400 | 1.0890 | 0.7097 |
1.1237 | 62.5 | 1500 | 1.0883 | 0.7167 |
1.0777 | 66.67 | 1600 | 1.1067 | 0.7219 |
1.0051 | 70.83 | 1700 | 1.1115 | 0.7236 |
0.9521 | 75.0 | 1800 | 1.0867 | 0.7132 |
0.9147 | 79.17 | 1900 | 1.0852 | 0.7210 |
0.8798 | 83.33 | 2000 | 1.1411 | 0.7097 |
0.8317 | 87.5 | 2100 | 1.1634 | 0.7018 |
0.7946 | 91.67 | 2200 | 1.1621 | 0.7201 |
0.7594 | 95.83 | 2300 | 1.1482 | 0.7036 |
0.729 | 100.0 | 2400 | 1.1493 | 0.7062 |
0.7055 | 104.17 | 2500 | 1.1726 | 0.6931 |
0.6622 | 108.33 | 2600 | 1.1938 | 0.7001 |
0.6583 | 112.5 | 2700 | 1.1832 | 0.7149 |
0.6299 | 116.67 | 2800 | 1.1996 | 0.7175 |
0.5903 | 120.83 | 2900 | 1.1986 | 0.7132 |
0.5816 | 125.0 | 3000 | 1.1909 | 0.7010 |
0.5583 | 129.17 | 3100 | 1.2079 | 0.6870 |
0.5392 | 133.33 | 3200 | 1.2109 | 0.7228 |
0.5412 | 137.5 | 3300 | 1.2353 | 0.7245 |
0.5136 | 141.67 | 3400 | 1.2390 | 0.7254 |
0.5007 | 145.83 | 3500 | 1.2273 | 0.7123 |
0.4883 | 150.0 | 3600 | 1.2773 | 0.7289 |
0.4835 | 154.17 | 3700 | 1.2678 | 0.7289 |
0.4568 | 158.33 | 3800 | 1.2592 | 0.7350 |
0.4525 | 162.5 | 3900 | 1.2705 | 0.7254 |
0.4379 | 166.67 | 4000 | 1.2717 | 0.7306 |
0.4198 | 170.83 | 4100 | 1.2618 | 0.7219 |
0.4216 | 175.0 | 4200 | 1.2909 | 0.7158 |
0.4305 | 179.17 | 4300 | 1.2808 | 0.7167 |
0.399 | 183.33 | 4400 | 1.2750 | 0.7193 |
0.3937 | 187.5 | 4500 | 1.2719 | 0.7149 |
0.3905 | 191.67 | 4600 | 1.2816 | 0.7158 |
0.3892 | 195.83 | 4700 | 1.2951 | 0.7210 |
0.3932 | 200.0 | 4800 | 1.2924 | 0.7201 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0