Hasano20's picture
Update README.md
532cd20 verified
metadata
license: other
base_model: microsoft/beit-base-finetuned-ade-640-640
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: BEiT_beit-base-finetuned-ade-640-640_Clean-Set1_RGB
    results: []
pipeline_tag: image-segmentation

BEiT_beit-base-finetuned-ade-640-640_Clean-Set1_RGB

This model is a fine-tuned version of microsoft/beit-base-finetuned-ade-640-640 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0603
  • Mean Iou: 0.9672
  • Mean Accuracy: 0.9774
  • Overall Accuracy: 0.9930
  • Accuracy Background: 0.9961
  • Accuracy Melt: 0.9392
  • Accuracy Substrate: 0.9971
  • Iou Background: 0.9929
  • Iou Melt: 0.9207
  • Iou Substrate: 0.9879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Melt Accuracy Substrate Iou Background Iou Melt Iou Substrate
0.3924 5.5556 50 0.3038 0.9022 0.9499 0.9809 0.9854 0.8738 0.9906 0.9853 0.7493 0.9719
0.0857 11.1111 100 0.0788 0.9656 0.9771 0.9931 0.9972 0.9377 0.9964 0.9939 0.9146 0.9883
0.0816 16.6667 150 0.0603 0.9672 0.9774 0.9930 0.9961 0.9392 0.9971 0.9929 0.9207 0.9879

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1