tiedeman's picture
Initial commit
11e9872
---
library_name: transformers
language:
- da
- de
- en
- es
- fo
- fr
- is
- nb
- nn
- no
- non
- pt
- sv
tags:
- translation
- opus-mt-tc-bible
license: apache-2.0
model-index:
- name: opus-mt-tc-bible-big-deu_eng_fra_por_spa-gmq
results:
- task:
name: Translation deu-dan
type: translation
args: deu-dan
dataset:
name: flores200-devtest
type: flores200-devtest
args: deu-dan
metrics:
- name: BLEU
type: bleu
value: 35.1
- name: chr-F
type: chrf
value: 0.62152
- task:
name: Translation deu-fao
type: translation
args: deu-fao
dataset:
name: flores200-devtest
type: flores200-devtest
args: deu-fao
metrics:
- name: BLEU
type: bleu
value: 11.5
- name: chr-F
type: chrf
value: 0.33611
- task:
name: Translation deu-isl
type: translation
args: deu-isl
dataset:
name: flores200-devtest
type: flores200-devtest
args: deu-isl
metrics:
- name: BLEU
type: bleu
value: 19.1
- name: chr-F
type: chrf
value: 0.48648
- task:
name: Translation deu-nno
type: translation
args: deu-nno
dataset:
name: flores200-devtest
type: flores200-devtest
args: deu-nno
metrics:
- name: BLEU
type: bleu
value: 24.0
- name: chr-F
type: chrf
value: 0.53530
- task:
name: Translation deu-nob
type: translation
args: deu-nob
dataset:
name: flores200-devtest
type: flores200-devtest
args: deu-nob
metrics:
- name: BLEU
type: bleu
value: 25.1
- name: chr-F
type: chrf
value: 0.55748
- task:
name: Translation deu-swe
type: translation
args: deu-swe
dataset:
name: flores200-devtest
type: flores200-devtest
args: deu-swe
metrics:
- name: BLEU
type: bleu
value: 34.2
- name: chr-F
type: chrf
value: 0.62138
- task:
name: Translation eng-dan
type: translation
args: eng-dan
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-dan
metrics:
- name: BLEU
type: bleu
value: 47.0
- name: chr-F
type: chrf
value: 0.70321
- task:
name: Translation eng-fao
type: translation
args: eng-fao
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-fao
metrics:
- name: BLEU
type: bleu
value: 14.1
- name: chr-F
type: chrf
value: 0.35857
- task:
name: Translation eng-isl
type: translation
args: eng-isl
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-isl
metrics:
- name: BLEU
type: bleu
value: 24.4
- name: chr-F
type: chrf
value: 0.52585
- task:
name: Translation eng-nno
type: translation
args: eng-nno
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-nno
metrics:
- name: BLEU
type: bleu
value: 33.8
- name: chr-F
type: chrf
value: 0.61372
- task:
name: Translation eng-nob
type: translation
args: eng-nob
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-nob
metrics:
- name: BLEU
type: bleu
value: 34.4
- name: chr-F
type: chrf
value: 0.62508
- task:
name: Translation eng-swe
type: translation
args: eng-swe
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-swe
metrics:
- name: BLEU
type: bleu
value: 46.0
- name: chr-F
type: chrf
value: 0.69703
- task:
name: Translation fra-dan
type: translation
args: fra-dan
dataset:
name: flores200-devtest
type: flores200-devtest
args: fra-dan
metrics:
- name: BLEU
type: bleu
value: 34.1
- name: chr-F
type: chrf
value: 0.61025
- task:
name: Translation fra-isl
type: translation
args: fra-isl
dataset:
name: flores200-devtest
type: flores200-devtest
args: fra-isl
metrics:
- name: BLEU
type: bleu
value: 18.8
- name: chr-F
type: chrf
value: 0.48273
- task:
name: Translation fra-nno
type: translation
args: fra-nno
dataset:
name: flores200-devtest
type: flores200-devtest
args: fra-nno
metrics:
- name: BLEU
type: bleu
value: 24.3
- name: chr-F
type: chrf
value: 0.53032
- task:
name: Translation fra-nob
type: translation
args: fra-nob
dataset:
name: flores200-devtest
type: flores200-devtest
args: fra-nob
metrics:
- name: BLEU
type: bleu
value: 25.0
- name: chr-F
type: chrf
value: 0.54933
- task:
name: Translation fra-swe
type: translation
args: fra-swe
dataset:
name: flores200-devtest
type: flores200-devtest
args: fra-swe
metrics:
- name: BLEU
type: bleu
value: 32.8
- name: chr-F
type: chrf
value: 0.60612
- task:
name: Translation por-dan
type: translation
args: por-dan
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-dan
metrics:
- name: BLEU
type: bleu
value: 36.2
- name: chr-F
type: chrf
value: 0.62221
- task:
name: Translation por-fao
type: translation
args: por-fao
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-fao
metrics:
- name: BLEU
type: bleu
value: 11.5
- name: chr-F
type: chrf
value: 0.33159
- task:
name: Translation por-isl
type: translation
args: por-isl
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-isl
metrics:
- name: BLEU
type: bleu
value: 19.6
- name: chr-F
type: chrf
value: 0.48357
- task:
name: Translation por-nno
type: translation
args: por-nno
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-nno
metrics:
- name: BLEU
type: bleu
value: 26.3
- name: chr-F
type: chrf
value: 0.54369
- task:
name: Translation por-nob
type: translation
args: por-nob
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-nob
metrics:
- name: BLEU
type: bleu
value: 26.4
- name: chr-F
type: chrf
value: 0.56054
- task:
name: Translation por-swe
type: translation
args: por-swe
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-swe
metrics:
- name: BLEU
type: bleu
value: 34.1
- name: chr-F
type: chrf
value: 0.61388
- task:
name: Translation spa-dan
type: translation
args: spa-dan
dataset:
name: flores200-devtest
type: flores200-devtest
args: spa-dan
metrics:
- name: BLEU
type: bleu
value: 24.7
- name: chr-F
type: chrf
value: 0.55091
- task:
name: Translation spa-isl
type: translation
args: spa-isl
dataset:
name: flores200-devtest
type: flores200-devtest
args: spa-isl
metrics:
- name: BLEU
type: bleu
value: 14.2
- name: chr-F
type: chrf
value: 0.44469
- task:
name: Translation spa-nno
type: translation
args: spa-nno
dataset:
name: flores200-devtest
type: flores200-devtest
args: spa-nno
metrics:
- name: BLEU
type: bleu
value: 18.6
- name: chr-F
type: chrf
value: 0.48898
- task:
name: Translation spa-nob
type: translation
args: spa-nob
dataset:
name: flores200-devtest
type: flores200-devtest
args: spa-nob
metrics:
- name: BLEU
type: bleu
value: 18.8
- name: chr-F
type: chrf
value: 0.50901
- task:
name: Translation spa-swe
type: translation
args: spa-swe
dataset:
name: flores200-devtest
type: flores200-devtest
args: spa-swe
metrics:
- name: BLEU
type: bleu
value: 22.7
- name: chr-F
type: chrf
value: 0.54182
- task:
name: Translation deu-dan
type: translation
args: deu-dan
dataset:
name: flores101-devtest
type: flores_101
args: deu dan devtest
metrics:
- name: BLEU
type: bleu
value: 34.8
- name: chr-F
type: chrf
value: 0.62006
- task:
name: Translation deu-isl
type: translation
args: deu-isl
dataset:
name: flores101-devtest
type: flores_101
args: deu isl devtest
metrics:
- name: BLEU
type: bleu
value: 18.8
- name: chr-F
type: chrf
value: 0.48236
- task:
name: Translation deu-swe
type: translation
args: deu-swe
dataset:
name: flores101-devtest
type: flores_101
args: deu swe devtest
metrics:
- name: BLEU
type: bleu
value: 33.7
- name: chr-F
type: chrf
value: 0.61778
- task:
name: Translation eng-swe
type: translation
args: eng-swe
dataset:
name: flores101-devtest
type: flores_101
args: eng swe devtest
metrics:
- name: BLEU
type: bleu
value: 45.5
- name: chr-F
type: chrf
value: 0.69435
- task:
name: Translation fra-dan
type: translation
args: fra-dan
dataset:
name: flores101-devtest
type: flores_101
args: fra dan devtest
metrics:
- name: BLEU
type: bleu
value: 34.0
- name: chr-F
type: chrf
value: 0.61019
- task:
name: Translation fra-isl
type: translation
args: fra-isl
dataset:
name: flores101-devtest
type: flores_101
args: fra isl devtest
metrics:
- name: BLEU
type: bleu
value: 18.1
- name: chr-F
type: chrf
value: 0.47647
- task:
name: Translation fra-swe
type: translation
args: fra-swe
dataset:
name: flores101-devtest
type: flores_101
args: fra swe devtest
metrics:
- name: BLEU
type: bleu
value: 32.2
- name: chr-F
type: chrf
value: 0.60354
- task:
name: Translation por-isl
type: translation
args: por-isl
dataset:
name: flores101-devtest
type: flores_101
args: por isl devtest
metrics:
- name: BLEU
type: bleu
value: 19.1
- name: chr-F
type: chrf
value: 0.47937
- task:
name: Translation por-swe
type: translation
args: por-swe
dataset:
name: flores101-devtest
type: flores_101
args: por swe devtest
metrics:
- name: BLEU
type: bleu
value: 33.1
- name: chr-F
type: chrf
value: 0.60857
- task:
name: Translation spa-dan
type: translation
args: spa-dan
dataset:
name: flores101-devtest
type: flores_101
args: spa dan devtest
metrics:
- name: BLEU
type: bleu
value: 24.4
- name: chr-F
type: chrf
value: 0.54890
- task:
name: Translation spa-nob
type: translation
args: spa-nob
dataset:
name: flores101-devtest
type: flores_101
args: spa nob devtest
metrics:
- name: BLEU
type: bleu
value: 18.3
- name: chr-F
type: chrf
value: 0.50610
- task:
name: Translation spa-swe
type: translation
args: spa-swe
dataset:
name: flores101-devtest
type: flores_101
args: spa swe devtest
metrics:
- name: BLEU
type: bleu
value: 22.4
- name: chr-F
type: chrf
value: 0.54011
- task:
name: Translation deu-dan
type: translation
args: deu-dan
dataset:
name: ntrex128
type: ntrex128
args: deu-dan
metrics:
- name: BLEU
type: bleu
value: 29.1
- name: chr-F
type: chrf
value: 0.56412
- task:
name: Translation deu-fao
type: translation
args: deu-fao
dataset:
name: ntrex128
type: ntrex128
args: deu-fao
metrics:
- name: BLEU
type: bleu
value: 12.5
- name: chr-F
type: chrf
value: 0.35495
- task:
name: Translation deu-isl
type: translation
args: deu-isl
dataset:
name: ntrex128
type: ntrex128
args: deu-isl
metrics:
- name: BLEU
type: bleu
value: 18.8
- name: chr-F
type: chrf
value: 0.48309
- task:
name: Translation deu-nno
type: translation
args: deu-nno
dataset:
name: ntrex128
type: ntrex128
args: deu-nno
metrics:
- name: BLEU
type: bleu
value: 22.0
- name: chr-F
type: chrf
value: 0.51535
- task:
name: Translation deu-nob
type: translation
args: deu-nob
dataset:
name: ntrex128
type: ntrex128
args: deu-nob
metrics:
- name: BLEU
type: bleu
value: 27.6
- name: chr-F
type: chrf
value: 0.56152
- task:
name: Translation deu-swe
type: translation
args: deu-swe
dataset:
name: ntrex128
type: ntrex128
args: deu-swe
metrics:
- name: BLEU
type: bleu
value: 29.6
- name: chr-F
type: chrf
value: 0.58061
- task:
name: Translation eng-dan
type: translation
args: eng-dan
dataset:
name: ntrex128
type: ntrex128
args: eng-dan
metrics:
- name: BLEU
type: bleu
value: 37.6
- name: chr-F
type: chrf
value: 0.61894
- task:
name: Translation eng-fao
type: translation
args: eng-fao
dataset:
name: ntrex128
type: ntrex128
args: eng-fao
metrics:
- name: BLEU
type: bleu
value: 15.9
- name: chr-F
type: chrf
value: 0.38410
- task:
name: Translation eng-isl
type: translation
args: eng-isl
dataset:
name: ntrex128
type: ntrex128
args: eng-isl
metrics:
- name: BLEU
type: bleu
value: 23.9
- name: chr-F
type: chrf
value: 0.52027
- task:
name: Translation eng-nno
type: translation
args: eng-nno
dataset:
name: ntrex128
type: ntrex128
args: eng-nno
metrics:
- name: BLEU
type: bleu
value: 34.0
- name: chr-F
type: chrf
value: 0.60754
- task:
name: Translation eng-nob
type: translation
args: eng-nob
dataset:
name: ntrex128
type: ntrex128
args: eng-nob
metrics:
- name: BLEU
type: bleu
value: 36.9
- name: chr-F
type: chrf
value: 0.62327
- task:
name: Translation eng-swe
type: translation
args: eng-swe
dataset:
name: ntrex128
type: ntrex128
args: eng-swe
metrics:
- name: BLEU
type: bleu
value: 41.3
- name: chr-F
type: chrf
value: 0.66129
- task:
name: Translation fra-dan
type: translation
args: fra-dan
dataset:
name: ntrex128
type: ntrex128
args: fra-dan
metrics:
- name: BLEU
type: bleu
value: 27.1
- name: chr-F
type: chrf
value: 0.54102
- task:
name: Translation fra-fao
type: translation
args: fra-fao
dataset:
name: ntrex128
type: ntrex128
args: fra-fao
metrics:
- name: BLEU
type: bleu
value: 10.8
- name: chr-F
type: chrf
value: 0.32337
- task:
name: Translation fra-isl
type: translation
args: fra-isl
dataset:
name: ntrex128
type: ntrex128
args: fra-isl
metrics:
- name: BLEU
type: bleu
value: 18.4
- name: chr-F
type: chrf
value: 0.47296
- task:
name: Translation fra-nno
type: translation
args: fra-nno
dataset:
name: ntrex128
type: ntrex128
args: fra-nno
metrics:
- name: BLEU
type: bleu
value: 21.6
- name: chr-F
type: chrf
value: 0.50532
- task:
name: Translation fra-nob
type: translation
args: fra-nob
dataset:
name: ntrex128
type: ntrex128
args: fra-nob
metrics:
- name: BLEU
type: bleu
value: 25.7
- name: chr-F
type: chrf
value: 0.54026
- task:
name: Translation fra-swe
type: translation
args: fra-swe
dataset:
name: ntrex128
type: ntrex128
args: fra-swe
metrics:
- name: BLEU
type: bleu
value: 27.9
- name: chr-F
type: chrf
value: 0.56278
- task:
name: Translation por-dan
type: translation
args: por-dan
dataset:
name: ntrex128
type: ntrex128
args: por-dan
metrics:
- name: BLEU
type: bleu
value: 30.0
- name: chr-F
type: chrf
value: 0.56288
- task:
name: Translation por-fao
type: translation
args: por-fao
dataset:
name: ntrex128
type: ntrex128
args: por-fao
metrics:
- name: BLEU
type: bleu
value: 12.7
- name: chr-F
type: chrf
value: 0.35059
- task:
name: Translation por-isl
type: translation
args: por-isl
dataset:
name: ntrex128
type: ntrex128
args: por-isl
metrics:
- name: BLEU
type: bleu
value: 17.8
- name: chr-F
type: chrf
value: 0.47577
- task:
name: Translation por-nno
type: translation
args: por-nno
dataset:
name: ntrex128
type: ntrex128
args: por-nno
metrics:
- name: BLEU
type: bleu
value: 23.0
- name: chr-F
type: chrf
value: 0.52158
- task:
name: Translation por-nob
type: translation
args: por-nob
dataset:
name: ntrex128
type: ntrex128
args: por-nob
metrics:
- name: BLEU
type: bleu
value: 27.4
- name: chr-F
type: chrf
value: 0.55788
- task:
name: Translation por-swe
type: translation
args: por-swe
dataset:
name: ntrex128
type: ntrex128
args: por-swe
metrics:
- name: BLEU
type: bleu
value: 29.3
- name: chr-F
type: chrf
value: 0.57790
- task:
name: Translation spa-dan
type: translation
args: spa-dan
dataset:
name: ntrex128
type: ntrex128
args: spa-dan
metrics:
- name: BLEU
type: bleu
value: 27.5
- name: chr-F
type: chrf
value: 0.55607
- task:
name: Translation spa-fao
type: translation
args: spa-fao
dataset:
name: ntrex128
type: ntrex128
args: spa-fao
metrics:
- name: BLEU
type: bleu
value: 12.5
- name: chr-F
type: chrf
value: 0.34781
- task:
name: Translation spa-isl
type: translation
args: spa-isl
dataset:
name: ntrex128
type: ntrex128
args: spa-isl
metrics:
- name: BLEU
type: bleu
value: 18.4
- name: chr-F
type: chrf
value: 0.48566
- task:
name: Translation spa-nno
type: translation
args: spa-nno
dataset:
name: ntrex128
type: ntrex128
args: spa-nno
metrics:
- name: BLEU
type: bleu
value: 22.2
- name: chr-F
type: chrf
value: 0.51741
- task:
name: Translation spa-nob
type: translation
args: spa-nob
dataset:
name: ntrex128
type: ntrex128
args: spa-nob
metrics:
- name: BLEU
type: bleu
value: 26.8
- name: chr-F
type: chrf
value: 0.55824
- task:
name: Translation spa-swe
type: translation
args: spa-swe
dataset:
name: ntrex128
type: ntrex128
args: spa-swe
metrics:
- name: BLEU
type: bleu
value: 28.8
- name: chr-F
type: chrf
value: 0.57851
- task:
name: Translation deu-dan
type: translation
args: deu-dan
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-dan
metrics:
- name: BLEU
type: bleu
value: 57.8
- name: chr-F
type: chrf
value: 0.74051
- task:
name: Translation deu-isl
type: translation
args: deu-isl
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-isl
metrics:
- name: BLEU
type: bleu
value: 31.7
- name: chr-F
type: chrf
value: 0.61256
- task:
name: Translation deu-nob
type: translation
args: deu-nob
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-nob
metrics:
- name: BLEU
type: bleu
value: 52.9
- name: chr-F
type: chrf
value: 0.71413
- task:
name: Translation deu-nor
type: translation
args: deu-nor
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-nor
metrics:
- name: BLEU
type: bleu
value: 52.7
- name: chr-F
type: chrf
value: 0.71253
- task:
name: Translation deu-swe
type: translation
args: deu-swe
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-swe
metrics:
- name: BLEU
type: bleu
value: 58.2
- name: chr-F
type: chrf
value: 0.72650
- task:
name: Translation eng-dan
type: translation
args: eng-dan
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-dan
metrics:
- name: BLEU
type: bleu
value: 60.6
- name: chr-F
type: chrf
value: 0.74708
- task:
name: Translation eng-fao
type: translation
args: eng-fao
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-fao
metrics:
- name: BLEU
type: bleu
value: 29.0
- name: chr-F
type: chrf
value: 0.48304
- task:
name: Translation eng-isl
type: translation
args: eng-isl
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-isl
metrics:
- name: BLEU
type: bleu
value: 33.2
- name: chr-F
type: chrf
value: 0.58312
- task:
name: Translation eng-nno
type: translation
args: eng-nno
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-nno
metrics:
- name: BLEU
type: bleu
value: 42.7
- name: chr-F
type: chrf
value: 0.62606
- task:
name: Translation eng-nob
type: translation
args: eng-nob
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-nob
metrics:
- name: BLEU
type: bleu
value: 57.4
- name: chr-F
type: chrf
value: 0.72340
- task:
name: Translation eng-nor
type: translation
args: eng-nor
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-nor
metrics:
- name: BLEU
type: bleu
value: 56.2
- name: chr-F
type: chrf
value: 0.71514
- task:
name: Translation eng-swe
type: translation
args: eng-swe
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-swe
metrics:
- name: BLEU
type: bleu
value: 60.5
- name: chr-F
type: chrf
value: 0.73720
- task:
name: Translation fra-dan
type: translation
args: fra-dan
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-dan
metrics:
- name: BLEU
type: bleu
value: 64.1
- name: chr-F
type: chrf
value: 0.78018
- task:
name: Translation fra-nob
type: translation
args: fra-nob
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-nob
metrics:
- name: BLEU
type: bleu
value: 59.1
- name: chr-F
type: chrf
value: 0.74252
- task:
name: Translation fra-nor
type: translation
args: fra-nor
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-nor
metrics:
- name: BLEU
type: bleu
value: 60.3
- name: chr-F
type: chrf
value: 0.74407
- task:
name: Translation fra-swe
type: translation
args: fra-swe
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-swe
metrics:
- name: BLEU
type: bleu
value: 62.1
- name: chr-F
type: chrf
value: 0.75644
- task:
name: Translation multi-multi
type: translation
args: multi-multi
dataset:
name: tatoeba-test-v2020-07-28-v2023-09-26
type: tatoeba_mt
args: multi-multi
metrics:
- name: BLEU
type: bleu
value: 56.4
- name: chr-F
type: chrf
value: 0.72858
- task:
name: Translation por-dan
type: translation
args: por-dan
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-dan
metrics:
- name: BLEU
type: bleu
value: 65.6
- name: chr-F
type: chrf
value: 0.79528
- task:
name: Translation por-nor
type: translation
args: por-nor
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-nor
metrics:
- name: BLEU
type: bleu
value: 58.0
- name: chr-F
type: chrf
value: 0.73559
- task:
name: Translation por-swe
type: translation
args: por-swe
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-swe
metrics:
- name: BLEU
type: bleu
value: 60.2
- name: chr-F
type: chrf
value: 0.75566
- task:
name: Translation spa-dan
type: translation
args: spa-dan
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-dan
metrics:
- name: BLEU
type: bleu
value: 57.7
- name: chr-F
type: chrf
value: 0.73310
- task:
name: Translation spa-nob
type: translation
args: spa-nob
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-nob
metrics:
- name: BLEU
type: bleu
value: 60.9
- name: chr-F
type: chrf
value: 0.76501
- task:
name: Translation spa-nor
type: translation
args: spa-nor
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-nor
metrics:
- name: BLEU
type: bleu
value: 60.1
- name: chr-F
type: chrf
value: 0.75815
- task:
name: Translation spa-swe
type: translation
args: spa-swe
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-swe
metrics:
- name: BLEU
type: bleu
value: 60.7
- name: chr-F
type: chrf
value: 0.74222
- task:
name: Translation eng-isl
type: translation
args: eng-isl
dataset:
name: newstest2021
type: wmt-2021-news
args: eng-isl
metrics:
- name: BLEU
type: bleu
value: 21.9
- name: chr-F
type: chrf
value: 0.51196
---
# opus-mt-tc-bible-big-deu_eng_fra_por_spa-gmq
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [Acknowledgements](#acknowledgements)
## Model Details
Neural machine translation model for translating from unknown (deu+eng+fra+por+spa) to North Germanic languages (gmq).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation (transformer-big)
- **Release**: 2024-05-30
- **License:** Apache-2.0
- **Language(s):**
- Source Language(s): deu eng fra por spa
- Target Language(s): dan fao isl nno nob non nor swe
- Valid Target Language Labels: >>dan<< >>fao<< >>isl<< >>jut<< >>nno<< >>nob<< >>non<< >>nor<< >>nrn<< >>ovd<< >>rmg<< >>swe<< >>xxx<<
- **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-gmq/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
- **Resources for more information:**
- [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-gmq/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
- [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
- [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<`
## Uses
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## How to Get Started With the Model
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>dan<< Replace this with text in an accepted source language.",
">>swe<< This is the second sentence."
]
model_name = "pytorch-models/opus-mt-tc-bible-big-deu_eng_fra_por_spa-gmq"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-gmq")
print(pipe(">>dan<< Replace this with text in an accepted source language."))
```
## Training
- **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
- **Pre-processing**: SentencePiece (spm32k,spm32k)
- **Model Type:** transformer-big
- **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-gmq/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
## Evaluation
* [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-gmq/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
* test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-gmq/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt)
* test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-gmq/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| deu-dan | tatoeba-test-v2021-08-07 | 0.74051 | 57.8 | 9998 | 74644 |
| deu-isl | tatoeba-test-v2021-08-07 | 0.61256 | 31.7 | 969 | 5951 |
| deu-nob | tatoeba-test-v2021-08-07 | 0.71413 | 52.9 | 3525 | 31978 |
| deu-nor | tatoeba-test-v2021-08-07 | 0.71253 | 52.7 | 3651 | 32928 |
| deu-swe | tatoeba-test-v2021-08-07 | 0.72650 | 58.2 | 3410 | 22701 |
| eng-dan | tatoeba-test-v2021-08-07 | 0.74708 | 60.6 | 10795 | 79385 |
| eng-fao | tatoeba-test-v2021-08-07 | 0.48304 | 29.0 | 294 | 1933 |
| eng-isl | tatoeba-test-v2021-08-07 | 0.58312 | 33.2 | 2503 | 19023 |
| eng-nno | tatoeba-test-v2021-08-07 | 0.62606 | 42.7 | 460 | 3428 |
| eng-nob | tatoeba-test-v2021-08-07 | 0.72340 | 57.4 | 4539 | 36119 |
| eng-nor | tatoeba-test-v2021-08-07 | 0.71514 | 56.2 | 5000 | 39552 |
| eng-swe | tatoeba-test-v2021-08-07 | 0.73720 | 60.5 | 10362 | 68067 |
| fra-dan | tatoeba-test-v2021-08-07 | 0.78018 | 64.1 | 1731 | 11312 |
| fra-nob | tatoeba-test-v2021-08-07 | 0.74252 | 59.1 | 323 | 2175 |
| fra-nor | tatoeba-test-v2021-08-07 | 0.74407 | 60.3 | 477 | 3097 |
| fra-swe | tatoeba-test-v2021-08-07 | 0.75644 | 62.1 | 1407 | 9170 |
| por-dan | tatoeba-test-v2021-08-07 | 0.79528 | 65.6 | 873 | 5258 |
| por-nor | tatoeba-test-v2021-08-07 | 0.73559 | 58.0 | 481 | 4030 |
| por-swe | tatoeba-test-v2021-08-07 | 0.75566 | 60.2 | 320 | 1938 |
| spa-dan | tatoeba-test-v2021-08-07 | 0.73310 | 57.7 | 5000 | 35937 |
| spa-isl | tatoeba-test-v2021-08-07 | 0.52169 | 18.7 | 238 | 1220 |
| spa-nob | tatoeba-test-v2021-08-07 | 0.76501 | 60.9 | 885 | 6762 |
| spa-nor | tatoeba-test-v2021-08-07 | 0.75815 | 60.1 | 960 | 7217 |
| spa-swe | tatoeba-test-v2021-08-07 | 0.74222 | 60.7 | 1351 | 8357 |
| deu-dan | flores101-devtest | 0.62006 | 34.8 | 1012 | 24638 |
| deu-isl | flores101-devtest | 0.48236 | 18.8 | 1012 | 22834 |
| deu-swe | flores101-devtest | 0.61778 | 33.7 | 1012 | 23121 |
| eng-swe | flores101-devtest | 0.69435 | 45.5 | 1012 | 23121 |
| fra-dan | flores101-devtest | 0.61019 | 34.0 | 1012 | 24638 |
| fra-isl | flores101-devtest | 0.47647 | 18.1 | 1012 | 22834 |
| fra-swe | flores101-devtest | 0.60354 | 32.2 | 1012 | 23121 |
| por-isl | flores101-devtest | 0.47937 | 19.1 | 1012 | 22834 |
| por-swe | flores101-devtest | 0.60857 | 33.1 | 1012 | 23121 |
| spa-dan | flores101-devtest | 0.54890 | 24.4 | 1012 | 24638 |
| spa-nob | flores101-devtest | 0.50610 | 18.3 | 1012 | 23873 |
| spa-swe | flores101-devtest | 0.54011 | 22.4 | 1012 | 23121 |
| deu-dan | flores200-devtest | 0.62152 | 35.1 | 1012 | 24638 |
| deu-isl | flores200-devtest | 0.48648 | 19.1 | 1012 | 22834 |
| deu-nno | flores200-devtest | 0.53530 | 24.0 | 1012 | 24316 |
| deu-nob | flores200-devtest | 0.55748 | 25.1 | 1012 | 23873 |
| deu-swe | flores200-devtest | 0.62138 | 34.2 | 1012 | 23121 |
| eng-dan | flores200-devtest | 0.70321 | 47.0 | 1012 | 24638 |
| eng-isl | flores200-devtest | 0.52585 | 24.4 | 1012 | 22834 |
| eng-nno | flores200-devtest | 0.61372 | 33.8 | 1012 | 24316 |
| eng-nob | flores200-devtest | 0.62508 | 34.4 | 1012 | 23873 |
| eng-swe | flores200-devtest | 0.69703 | 46.0 | 1012 | 23121 |
| fra-dan | flores200-devtest | 0.61025 | 34.1 | 1012 | 24638 |
| fra-isl | flores200-devtest | 0.48273 | 18.8 | 1012 | 22834 |
| fra-nno | flores200-devtest | 0.53032 | 24.3 | 1012 | 24316 |
| fra-nob | flores200-devtest | 0.54933 | 25.0 | 1012 | 23873 |
| fra-swe | flores200-devtest | 0.60612 | 32.8 | 1012 | 23121 |
| por-dan | flores200-devtest | 0.62221 | 36.2 | 1012 | 24638 |
| por-isl | flores200-devtest | 0.48357 | 19.6 | 1012 | 22834 |
| por-nno | flores200-devtest | 0.54369 | 26.3 | 1012 | 24316 |
| por-nob | flores200-devtest | 0.56054 | 26.4 | 1012 | 23873 |
| por-swe | flores200-devtest | 0.61388 | 34.1 | 1012 | 23121 |
| spa-dan | flores200-devtest | 0.55091 | 24.7 | 1012 | 24638 |
| spa-isl | flores200-devtest | 0.44469 | 14.2 | 1012 | 22834 |
| spa-nno | flores200-devtest | 0.48898 | 18.6 | 1012 | 24316 |
| spa-nob | flores200-devtest | 0.50901 | 18.8 | 1012 | 23873 |
| spa-swe | flores200-devtest | 0.54182 | 22.7 | 1012 | 23121 |
| eng-isl | newstest2021 | 0.51196 | 21.9 | 1000 | 25233 |
| deu-dan | ntrex128 | 0.56412 | 29.1 | 1997 | 47643 |
| deu-isl | ntrex128 | 0.48309 | 18.8 | 1997 | 46643 |
| deu-nno | ntrex128 | 0.51535 | 22.0 | 1997 | 46512 |
| deu-nob | ntrex128 | 0.56152 | 27.6 | 1997 | 45501 |
| deu-swe | ntrex128 | 0.58061 | 29.6 | 1997 | 44889 |
| eng-dan | ntrex128 | 0.61894 | 37.6 | 1997 | 47643 |
| eng-isl | ntrex128 | 0.52027 | 23.9 | 1997 | 46643 |
| eng-nno | ntrex128 | 0.60754 | 34.0 | 1997 | 46512 |
| eng-nob | ntrex128 | 0.62327 | 36.9 | 1997 | 45501 |
| eng-swe | ntrex128 | 0.66129 | 41.3 | 1997 | 44889 |
| fra-dan | ntrex128 | 0.54102 | 27.1 | 1997 | 47643 |
| fra-isl | ntrex128 | 0.47296 | 18.4 | 1997 | 46643 |
| fra-nno | ntrex128 | 0.50532 | 21.6 | 1997 | 46512 |
| fra-nob | ntrex128 | 0.54026 | 25.7 | 1997 | 45501 |
| fra-swe | ntrex128 | 0.56278 | 27.9 | 1997 | 44889 |
| por-dan | ntrex128 | 0.56288 | 30.0 | 1997 | 47643 |
| por-isl | ntrex128 | 0.47577 | 17.8 | 1997 | 46643 |
| por-nno | ntrex128 | 0.52158 | 23.0 | 1997 | 46512 |
| por-nob | ntrex128 | 0.55788 | 27.4 | 1997 | 45501 |
| por-swe | ntrex128 | 0.57790 | 29.3 | 1997 | 44889 |
| spa-dan | ntrex128 | 0.55607 | 27.5 | 1997 | 47643 |
| spa-isl | ntrex128 | 0.48566 | 18.4 | 1997 | 46643 |
| spa-nno | ntrex128 | 0.51741 | 22.2 | 1997 | 46512 |
| spa-nob | ntrex128 | 0.55824 | 26.8 | 1997 | 45501 |
| spa-swe | ntrex128 | 0.57851 | 28.8 | 1997 | 44889 |
## Citation Information
* Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```bibtex
@article{tiedemann2023democratizing,
title={Democratizing neural machine translation with {OPUS-MT}},
author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
journal={Language Resources and Evaluation},
number={58},
pages={713--755},
year={2023},
publisher={Springer Nature},
issn={1574-0218},
doi={10.1007/s10579-023-09704-w}
}
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Acknowledgements
The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
## Model conversion info
* transformers version: 4.45.1
* OPUS-MT git hash: 0882077
* port time: Tue Oct 8 10:03:29 EEST 2024
* port machine: LM0-400-22516.local