|
--- |
|
language: |
|
- zh |
|
- en |
|
|
|
tags: |
|
- translation |
|
|
|
license: cc-by-4.0 |
|
--- |
|
|
|
### zho-eng |
|
|
|
## Table of Contents |
|
- [Model Details](#model-details) |
|
- [Uses](#uses) |
|
- [Risks, Limitations and Biases](#risks-limitations-and-biases) |
|
- [Training](#training) |
|
- [Evaluation](#evaluation) |
|
- [Citation Information](#citation-information) |
|
- [How to Get Started With the Model](#how-to-get-started-with-the-model) |
|
|
|
## Model Details |
|
- **Model Description:** |
|
- **Developed by:** Language Technology Research Group at the University of Helsinki |
|
- **Model Type:** Translation |
|
- **Language(s):** |
|
- Source Language: Chinese |
|
- Target Language: English |
|
- **License:** CC-BY-4.0 |
|
- **Resources for more information:** |
|
- [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) |
|
- [Paper](https://aclanthology.org/2020.eamt-1.61/) |
|
|
|
|
|
## Uses |
|
|
|
#### Direct Use |
|
|
|
This model can be used for translation and text-to-text generation. |
|
|
|
|
|
## Risks, Limitations and Biases |
|
|
|
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** |
|
|
|
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). |
|
|
|
Further details about the dataset for this model can be found in the OPUS readme: [zho-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-eng/README.md) |
|
|
|
## Training |
|
|
|
#### System Information |
|
* helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 |
|
* transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b |
|
* port_machine: brutasse |
|
* port_time: 2020-08-21-14:41 |
|
* src_multilingual: False |
|
* tgt_multilingual: False |
|
|
|
#### Training Data |
|
##### Preprocessing |
|
* pre-processing: normalization + SentencePiece (spm32k,spm32k) |
|
* ref_len: 82826.0 |
|
* dataset: [opus](https://github.com/Helsinki-NLP/Opus-MT) |
|
* download original weights: [opus-2020-07-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.zip) |
|
|
|
* test set translations: [opus-2020-07-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.test.txt) |
|
|
|
|
|
## Evaluation |
|
|
|
#### Results |
|
|
|
* test set scores: [opus-2020-07-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.eval.txt) |
|
|
|
* brevity_penalty: 0.948 |
|
|
|
|
|
## Benchmarks |
|
|
|
| testset | BLEU | chr-F | |
|
|-----------------------|-------|-------| |
|
| Tatoeba-test.zho.eng | 36.1 | 0.548 | |
|
|
|
## Citation Information |
|
|
|
```bibtex |
|
@InProceedings{TiedemannThottingal:EAMT2020, |
|
author = {J{\"o}rg Tiedemann and Santhosh Thottingal}, |
|
title = {{OPUS-MT} β {B}uilding open translation services for the {W}orld}, |
|
booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)}, |
|
year = {2020}, |
|
address = {Lisbon, Portugal} |
|
} |
|
``` |
|
|
|
## How to Get Started With the Model |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en") |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en") |
|
``` |
|
|
|
|
|
|