hex-rvc / app.py
Hev832's picture
Update app.py
a20f4f4 verified
raw
history blame
13.7 kB
import os
import re
import random
from scipy.io.wavfile import write
from scipy.io.wavfile import read
import numpy as np
import gradio as gr
import yt_dlp
import subprocess
from pydub import AudioSegment
from audio_separator.separator import Separator
from lib.infer import infer_audio
import edge_tts
import tempfile
import anyio
from pathlib import Path
from lib.language_tts import language_dict
import os
import zipfile
import shutil
import urllib.request
import gdown
import subprocess
from argparse import ArgumentParser
main_dir = Path().resolve()
print(main_dir)
os.chdir(main_dir)
models_dir = "models"
audio_separat_dir = main_dir / "audio_input"
def download_audio(url):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'ytdl/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
sample_rate, audio_data = read(file_path)
audio_array = np.asarray(audio_data, dtype=np.int16)
return sample_rate, audio_array
# Define a function to handle the entire separation process
def separate_audio(input_audio, model_voc_inst, model_deecho, model_back_voc):
output_dir = audio_separat_dir
separator = Separator(output_dir=output_dir)
# Define output files
vocals = os.path.join(output_dir, 'Vocals.wav')
instrumental = os.path.join(output_dir, 'Instrumental.wav')
vocals_reverb = os.path.join(output_dir, 'Vocals (Reverb).wav')
vocals_no_reverb = os.path.join(output_dir, 'Vocals (No Reverb).wav')
lead_vocals = os.path.join(output_dir, 'Lead Vocals.wav')
backing_vocals = os.path.join(output_dir, 'Backing Vocals.wav')
# Splitting a track into Vocal and Instrumental
separator.load_model(model_filename=model_voc_inst)
voc_inst = separator.separate(input_audio)
os.rename(os.path.join(output_dir, voc_inst[0]), instrumental) # Rename to “Instrumental.wav”
os.rename(os.path.join(output_dir, voc_inst[1]), vocals) # Rename to “Vocals.wav”
# Applying DeEcho-DeReverb to Vocals
separator.load_model(model_filename=model_deecho)
voc_no_reverb = separator.separate(vocals)
os.rename(os.path.join(output_dir, voc_no_reverb[0]), vocals_no_reverb) # Rename to “Vocals (No Reverb).wav”
os.rename(os.path.join(output_dir, voc_no_reverb[1]), vocals_reverb) # Rename to “Vocals (Reverb).wav”
# Separating Back Vocals from Main Vocals
separator.load_model(model_filename=model_back_voc)
backing_voc = separator.separate(vocals_no_reverb)
os.rename(os.path.join(output_dir, backing_voc[0]), backing_vocals) # Rename to “Backing Vocals.wav”
os.rename(os.path.join(output_dir, backing_voc[1]), lead_vocals) # Rename to “Lead Vocals.wav”
return instrumental, vocals, vocals_reverb, vocals_no_reverb, lead_vocals, backing_vocals
# Main function to process audio (Inference)
def process_audio(MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE,
FILTER_RADIUS, RMS_MIX_RATE, PROTECT, SPLIT_INFER, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP,
KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio=None):
# If no sound path is given, use the uploaded file
if not SOUND_PATH and upload_audio is not None:
SOUND_PATH = os.path.join("uploaded_audio", upload_audio.name)
with open(SOUND_PATH, "wb") as f:
f.write(upload_audio.read())
# Check if a model name is provided
if not MODEL_NAME:
return "Please provide a model name."
# Run the inference
os.system("chmod +x stftpitchshift")
inferred_audio = infer_audio(
MODEL_NAME,
SOUND_PATH,
F0_CHANGE,
F0_METHOD,
MIN_PITCH,
MAX_PITCH,
CREPE_HOP_LENGTH,
INDEX_RATE,
FILTER_RADIUS,
RMS_MIX_RATE,
PROTECT,
SPLIT_INFER,
MIN_SILENCE,
SILENCE_THRESHOLD,
SEEK_STEP,
KEEP_SILENCE,
FORMANT_SHIFT,
QUEFRENCY,
TIMBRE,
F0_AUTOTUNE,
OUTPUT_FORMAT
)
return inferred_audio
async def text_to_speech_edge(text, language_code):
voice = language_dict.get(language_code, "default_voice")
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
def extract_zip(extraction_folder, zip_name):
os.makedirs(extraction_folder)
with zipfile.ZipFile(zip_name, 'r') as zip_ref:
zip_ref.extractall(extraction_folder)
os.remove(zip_name)
index_filepath, model_filepath = None, None
for root, dirs, files in os.walk(extraction_folder):
for name in files:
if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
index_filepath = os.path.join(root, name)
if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
model_filepath = os.path.join(root, name)
if not model_filepath:
raise Exception(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
# move model and index file to extraction folder
os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
if index_filepath:
os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
# remove any unnecessary nested folders
for filepath in os.listdir(extraction_folder):
if os.path.isdir(os.path.join(extraction_folder, filepath)):
shutil.rmtree(os.path.join(extraction_folder, filepath))
def download_online_model(url, dir_name):
try:
print(f'[~] Downloading voice model with name {dir_name}...')
zip_name = url.split('/')[-1]
extraction_folder = os.path.join(models_dir, dir_name)
if os.path.exists(extraction_folder):
raise Exception(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
if 'pixeldrain.com' in url:
url = f'https://pixeldrain.com/api/file/{zip_name}'
if 'drive.google.com' in url:
zip_name = dir_name + ".zip"
gdown.download(url, output=zip_name, use_cookies=True, quiet=True, fuzzy=True)
else:
urllib.request.urlretrieve(url, zip_name)
print(f'[~] Extracting zip file...')
extract_zip(extraction_folder, zip_name)
print(f'[+] {dir_name} Model successfully downloaded!')
except Exception as e:
raise Exception(str(e))
if __name__ == '__main__':
parser = ArgumentParser(description='Generate a AI song in the song_output/id directory.', add_help=True)
parser.add_argument("--share", action="store_true", dest="share_enabled", default=False, help="Enable sharing")
parser.add_argument("--listen", action="store_true", default=False, help="Make the UI reachable from your local network.")
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
args = parser.parse_args()
# Gradio Blocks Interface with Tabs
with gr.Blocks(title="Hex RVC", theme=gr.themes.Default(primary_hue="red", secondary_hue="pink")) as app:
gr.Markdown("# Hex RVC")
gr.Markdown(" join [AIHub](https://discord.gg/aihub) to get the rvc model!")
with gr.Tab("Inference"):
with gr.Row():
MODEL_NAME = gr.Textbox(label="Model Name", placeholder="Enter model name")
SOUND_PATH = gr.Textbox(label="Audio Path (Optional)", placeholder="Leave blank to upload audio")
upload_audio = gr.Audio(label="Upload Audio", type='filepath')
with gr.Row():
F0_CHANGE = gr.Number(label="Pitch Change (semitones)", value=0)
F0_METHOD = gr.Dropdown(choices=["crepe", "harvest", "mangio-crepe", "rmvpe", "rmvpe+", "fcpe", "hybrid[rmvpe+fcpe]"],
label="F0 Method", value="fcpe")
with gr.Row():
MIN_PITCH = gr.Textbox(label="Min Pitch", value="50")
MAX_PITCH = gr.Textbox(label="Max Pitch", value="1100")
CREPE_HOP_LENGTH = gr.Number(label="Crepe Hop Length", value=120)
INDEX_RATE = gr.Slider(label="Index Rate", minimum=0, maximum=1, value=0.75)
FILTER_RADIUS = gr.Number(label="Filter Radius", value=3)
RMS_MIX_RATE = gr.Slider(label="RMS Mix Rate", minimum=0, maximum=1, value=0.25)
PROTECT = gr.Slider(label="Protect", minimum=0, maximum=1, value=0.33)
with gr.Accordion("Hex TTS"):
input_text = gr.Textbox(lines=5, label="Input Text")
#output_text = gr.Textbox(label="Output Text")
#output_audio = gr.Audio(type="filepath", label="Exported Audio")
language = gr.Dropdown(choices=list(language_dict.keys()), label="Choose the Voice Model")
tts_convert = gr.Button("Convert")
tts_convert.click(fn=text_to_speech_edge, inputs=[input_text, language], outputs=[upload_audio])
with gr.Accordion("Advanced Settings", open=False):
SPLIT_INFER = gr.Checkbox(label="Enable Split Inference", value=False)
MIN_SILENCE = gr.Number(label="Min Silence (ms)", value=500)
SILENCE_THRESHOLD = gr.Number(label="Silence Threshold (dBFS)", value=-50)
SEEK_STEP = gr.Slider(label="Seek Step (ms)", minimum=1, maximum=10, value=1)
KEEP_SILENCE = gr.Number(label="Keep Silence (ms)", value=200)
FORMANT_SHIFT = gr.Checkbox(label="Enable Formant Shift", value=False)
QUEFRENCY = gr.Number(label="Quefrency", value=0)
TIMBRE = gr.Number(label="Timbre", value=1)
F0_AUTOTUNE = gr.Checkbox(label="Enable F0 Autotune", value=False)
OUTPUT_FORMAT = gr.Dropdown(choices=["wav", "flac", "mp3"], label="Output Format", value="wav")
run_button = gr.Button("Run Inference")
output_audio = gr.Audio(label="Generated Audio", type='filepath')
run_button.click(
process_audio,
inputs=[MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE,
FILTER_RADIUS, RMS_MIX_RATE, PROTECT, SPLIT_INFER, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP,
KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio],
outputs=output_audio
)
with gr.Tab("Download RVC Model"):
url = gr.Textbox(label="Your model URL")
dirname = gr.Textbox(label="Your Model name")
button_model = gr.Button("Download model")
button_model.click(fn=download_online_model, inputs=[url, dirname], outputs=[dirname])
with gr.Tab("Audio Separation"):
with gr.Row():
input_audio = gr.Audio(type="filepath", label="Upload Audio File")
with gr.Row():
with gr.Accordion("Separation by Link", open = False):
with gr.Row():
roformer_link = gr.Textbox(
label = "Link",
placeholder = "Paste the link here",
interactive = True
)
with gr.Row():
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
with gr.Row():
roformer_download_button = gr.Button(
"Download!",
variant = "primary"
)
roformer_download_button.click(download_audio, [roformer_link], [input_audio])
with gr.Row():
model_voc_inst = gr.Textbox(value='model_bs_roformer_ep_317_sdr_12.9755.ckpt', label="Vocal & Instrumental Model", visible=False)
model_deecho = gr.Textbox(value='UVR-DeEcho-DeReverb.pth', label="DeEcho-DeReverb Model", visible=False)
model_back_voc = gr.Textbox(value='mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt', label="Backing Vocals Model", visible=False)
separate_button = gr.Button("Separate Audio")
with gr.Row():
instrumental_out = gr.Audio(label="Instrumental")
vocals_out = gr.Audio(label="Vocals")
vocals_reverb_out = gr.Audio(label="Vocals (Reverb)")
vocals_no_reverb_out = gr.Audio(label="Vocals (No Reverb)")
lead_vocals_out = gr.Audio(label="Lead Vocals")
backing_vocals_out = gr.Audio(label="Backing Vocals")
separate_button.click(
separate_audio,
inputs=[input_audio, model_voc_inst, model_deecho, model_back_voc],
outputs=[instrumental_out, vocals_out, vocals_reverb_out, vocals_no_reverb_out, lead_vocals_out, backing_vocals_out]
)
# Launch the Gradio app
app.launch(
share=args.share_enabled,
server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
server_port=args.listen_port,
)