metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
datasets:
- HiTZ/multilingual-abstrct
language:
- en
- es
- fr
- it
metrics:
- f1
pipeline_tag: token-classification
library_name: transformers
widget:
- text: >-
In the comparison of responders versus patients with both SD (6m) and PD,
responders indicated better physical well-being (P=.004) and mood (P=.02)
at month 3.
- text: >-
En la comparación de los que respondieron frente a los pacientes tanto con
SD (6m) como con EP, los que respondieron indicaron un mejor bienestar
físico (P=.004) y estado de ánimo (P=.02) en el mes 3.
- text: >-
Dans la comparaison entre les répondeurs et les patients atteints de SD
(6m) et de PD, les répondeurs ont indiqué un meilleur bien-être physique
(P=.004) et une meilleure humeur (P=.02) au mois 3.
- text: >-
Nel confronto tra i responder e i pazienti con SD (6m) e PD, i responder
hanno indicato un migliore benessere fisico (P=.004) e umore (P=.02) al
terzo mese.
mBERT for multilingual Argument Detection in the Medical Domain
This model is a fine-tuned version of bert-base-multilingual-cased for the argument component detection task on AbstRCT data in English, Spanish, French and Italian (https://huggingface.co/datasets/HiTZ/multilingual-abstrct).
Performance
F1-macro scores and their averages per test set from the argument component detection results of monolingual, monolingual automatically post-processed, multilingual, multilingual automatically post-processed, and crosslingual experiments.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2
Contact: Anar Yeginbergen and Rodrigo Agerri HiTZ Center - Ixa, University of the Basque Country UPV/EHU