judicial-summarization-Mistral-finetuned_mildsum_FL
This model is a fine-tuned version of unsloth/mistral-7b-v0.3-bnb-4bit on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0214
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.143 | 0.9991 | 273 | 1.2892 |
1.1243 | 1.9982 | 546 | 1.2952 |
0.8696 | 2.9973 | 819 | 1.3759 |
0.593 | 4.0 | 1093 | 1.5161 |
0.3457 | 4.9991 | 1366 | 1.7477 |
0.1588 | 5.9945 | 1638 | 2.0214 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for Hiranmai49/judicial-summarization-Mistral-finetuned_mildsum_FL
Base model
unsloth/mistral-7b-v0.3-bnb-4bit