Hiranmai49's picture
judicial-summarization-llama-3-finetuned_mildsum_TR
75a955f verified
|
raw
history blame
1.78 kB
metadata
base_model: unsloth/llama-3-8b-bnb-4bit
library_name: peft
license: llama3
tags:
  - trl
  - sft
  - unsloth
  - generated_from_trainer
model-index:
  - name: judicial-summarization-llama-3-finetuned_mildsum_TR
    results: []

judicial-summarization-llama-3-finetuned_mildsum_TR

This model is a fine-tuned version of unsloth/llama-3-8b-bnb-4bit on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0157

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss
1.5351 1.0 273 1.6661
1.3986 2.0 546 1.6676
1.3575 3.0 819 1.7026
1.2119 4.0 1092 1.7920
1.0078 5.0 1365 1.8972
0.7387 6.0 1638 2.0157

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1