judicial-summarization-llama-3-finetuned_sci-headnotes_maxData
This model is a fine-tuned version of unsloth/meta-llama-3.1-8b-instruct-bnb-4bit on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6641
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2804 | 1.0 | 726 | 1.3918 |
1.392 | 2.0 | 1452 | 1.3744 |
1.1555 | 3.0 | 2178 | 1.3951 |
0.9796 | 4.0 | 2904 | 1.4558 |
0.9031 | 5.0 | 3630 | 1.5524 |
0.7454 | 6.0 | 4356 | 1.6641 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3