Holarissun's picture
End of training
2e1fea3 verified
metadata
license: mit
library_name: peft
tags:
  - trl
  - reward-trainer
  - generated_from_trainer
metrics:
  - accuracy
base_model: openai-community/gpt2-large
model-index:
  - name: >-
      RM-HH-GPT2Large_helpful_gpt3_loraR64_40000_gpt2-large_shuffleFalse_extractchosenFalse
    results: []

RM-HH-GPT2Large_helpful_gpt3_loraR64_40000_gpt2-large_shuffleFalse_extractchosenFalse

This model is a fine-tuned version of openai-community/gpt2-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0335
  • Accuracy: 0.9906

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.41e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6956 0.02 250 0.5812 0.7384
0.6388 0.04 500 0.3891 0.9145
0.5931 0.06 750 0.2579 0.9580
0.5705 0.08 1000 0.1982 0.9750
0.5449 0.1 1250 0.1534 0.9797
0.577 0.13 1500 0.1506 0.9821
0.5225 0.15 1750 0.1299 0.9836
0.5516 0.17 2000 0.1285 0.9866
0.5528 0.19 2250 0.1244 0.9870
0.579 0.21 2500 0.1299 0.9881
0.5386 0.23 2750 0.1140 0.9881
0.5427 0.25 3000 0.1057 0.9885
0.5502 0.27 3250 0.1000 0.9889
0.5309 0.29 3500 0.0818 0.9895
0.558 0.31 3750 0.0966 0.9896
0.5523 0.33 4000 0.0833 0.9898
0.545 0.36 4250 0.0920 0.9902
0.5402 0.38 4500 0.0928 0.9898
0.5271 0.4 4750 0.0824 0.9902
0.5613 0.42 5000 0.0903 0.9915
0.5064 0.44 5250 0.0723 0.9913
0.5714 0.46 5500 0.0738 0.9915
0.5285 0.48 5750 0.0756 0.9908
0.5311 0.5 6000 0.0757 0.9906
0.5205 0.52 6250 0.0730 0.9895
0.5311 0.54 6500 0.0729 0.9904
0.5209 0.57 6750 0.0666 0.9896
0.5529 0.59 7000 0.0795 0.9904
0.5495 0.61 7250 0.0698 0.9910
0.5184 0.63 7500 0.0695 0.9902
0.5609 0.65 7750 0.0722 0.9904
0.5024 0.67 8000 0.0656 0.9904
0.5536 0.69 8250 0.0779 0.9889
0.5402 0.71 8500 0.0715 0.9893
0.5204 0.73 8750 0.0681 0.9896
0.544 0.75 9000 0.0700 0.9896
0.5502 0.77 9250 0.0722 0.9902
0.5334 0.8 9500 0.0650 0.9910
0.5229 0.82 9750 0.0606 0.9900
0.5235 0.84 10000 0.0525 0.9906
0.534 0.86 10250 0.0623 0.9895
0.5314 0.88 10500 0.0561 0.9904
0.5311 0.9 10750 0.0503 0.9902
0.5457 0.92 11000 0.0515 0.9910
0.548 0.94 11250 0.0589 0.9910
0.5504 0.96 11500 0.0612 0.9908
0.5102 0.98 11750 0.0501 0.9908
0.5197 1.0 12000 0.0505 0.9913
0.5406 1.03 12250 0.0458 0.9908
0.5372 1.05 12500 0.0468 0.9908
0.4972 1.07 12750 0.0429 0.9910
0.5059 1.09 13000 0.0422 0.9906
0.536 1.11 13250 0.0462 0.9900
0.5116 1.13 13500 0.0408 0.9904
0.5504 1.15 13750 0.0479 0.9908
0.5393 1.17 14000 0.0462 0.9908
0.511 1.19 14250 0.0426 0.9908
0.5059 1.21 14500 0.0403 0.9906
0.5324 1.23 14750 0.0381 0.9906
0.5227 1.26 15000 0.0368 0.9906
0.5377 1.28 15250 0.0442 0.9904
0.5269 1.3 15500 0.0446 0.9906
0.5088 1.32 15750 0.0487 0.9904
0.5271 1.34 16000 0.0474 0.9908
0.4952 1.36 16250 0.0377 0.9915
0.5201 1.38 16500 0.0392 0.9906
0.5316 1.4 16750 0.0431 0.9908
0.5186 1.42 17000 0.0421 0.9900
0.4963 1.44 17250 0.0366 0.9908
0.5324 1.46 17500 0.0392 0.9906
0.5257 1.49 17750 0.0392 0.9911
0.4908 1.51 18000 0.0348 0.9910
0.5186 1.53 18250 0.0371 0.9906
0.5385 1.55 18500 0.0385 0.9906
0.5267 1.57 18750 0.0370 0.9910
0.5294 1.59 19000 0.0372 0.9906
0.5243 1.61 19250 0.0360 0.9908
0.5414 1.63 19500 0.0376 0.9906
0.5171 1.65 19750 0.0403 0.9904
0.5081 1.67 20000 0.0363 0.9908
0.543 1.7 20250 0.0353 0.9908
0.5121 1.72 20500 0.0341 0.9910
0.5047 1.74 20750 0.0330 0.9908
0.5386 1.76 21000 0.0327 0.9911
0.5261 1.78 21250 0.0341 0.9910
0.4973 1.8 21500 0.0329 0.9913
0.5185 1.82 21750 0.0329 0.9911
0.5215 1.84 22000 0.0325 0.9911
0.4922 1.86 22250 0.0314 0.9911
0.5354 1.88 22500 0.0327 0.9908
0.5489 1.9 22750 0.0337 0.9911
0.538 1.93 23000 0.0336 0.9913
0.508 1.95 23250 0.0335 0.9910
0.5316 1.97 23500 0.0333 0.9910
0.5496 1.99 23750 0.0335 0.9906

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2