Gemma_AAID_new_mixed_train
This model is a fine-tuned version of google/gemma-7b on the AAID_new_mixed dataset. It achieves the following results on the evaluation set:
- Loss: 0.6587
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.1586 | 0.0109 | 10 | 0.7907 |
0.6717 | 0.0219 | 20 | 0.7609 |
0.5741 | 0.0328 | 30 | 0.7404 |
0.5809 | 0.0438 | 40 | 0.7739 |
0.5313 | 0.0547 | 50 | 0.7002 |
0.4879 | 0.0656 | 60 | 0.7159 |
0.4665 | 0.0766 | 70 | 0.7063 |
0.4509 | 0.0875 | 80 | 0.6992 |
0.4542 | 0.0984 | 90 | 0.6915 |
0.4188 | 0.1094 | 100 | 0.6587 |
0.4131 | 0.1203 | 110 | 0.6637 |
0.4137 | 0.1313 | 120 | 0.6902 |
0.4087 | 0.1422 | 130 | 0.6949 |
0.3968 | 0.1531 | 140 | 0.6713 |
0.4048 | 0.1641 | 150 | 0.6878 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for Holmeister/Gemma_AAID_new_mixed_train
Base model
google/gemma-7b