TURNA_TSATweets_cond_gen_no_instruction
This model is a fine-tuned version of google/mt5-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0710
- Rouge1: 0.708
- Rouge2: 0.094
- Rougel: 0.709
- Rougelsum: 0.708
- Bleu: 0.0
- Precisions: [0.709, 0.0, 0.0, 0.0]
- Brevity Penalty: 1.0
- Length Ratio: 1.0
- Translation Length: 1000
- Reference Length: 1000
- Meteor: 0.3545
- Score: 29.1000
- Num Edits: 291
- Ref Length: 1000.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Meteor | Score | Num Edits | Ref Length |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 0.5 | 82 | 0.1335 | 0.2707 | 0.0 | 0.2707 | 0.2707 | 0.0 | [0.2706896551724138, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.1353 | 72.9310 | 423 | 580.0 |
2.9168 | 1.0 | 164 | 0.0903 | 0.6172 | 0.0017 | 0.6190 | 0.6155 | 0.0 | [0.6172413793103448, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3086 | 38.2759 | 222 | 580.0 |
2.9168 | 1.5 | 246 | 0.0968 | 0.6310 | 0.0 | 0.6328 | 0.6310 | 0.0 | [0.6310344827586207, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3155 | 36.8966 | 214 | 580.0 |
0.1116 | 2.0 | 328 | 0.0769 | 0.6586 | 0.0328 | 0.6603 | 0.6603 | 0.0 | [0.6603448275862069, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3302 | 33.9655 | 197 | 580.0 |
0.1116 | 2.5 | 410 | 0.0762 | 0.6931 | 0.0707 | 0.6931 | 0.6931 | 0.0 | [0.6931034482758621, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3466 | 30.6897 | 178 | 580.0 |
0.0921 | 3.0 | 492 | 0.0709 | 0.6931 | 0.0276 | 0.6931 | 0.6931 | 0.0 | [0.6931034482758621, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3466 | 30.6897 | 178 | 580.0 |
0.0921 | 3.5 | 574 | 0.0897 | 0.6897 | 0.0379 | 0.6897 | 0.6897 | 0.0 | [0.6896551724137931, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3448 | 31.0345 | 180 | 580.0 |
0.079 | 4.0 | 656 | 0.0679 | 0.6931 | 0.0707 | 0.6948 | 0.6931 | 0.0 | [0.6948275862068966, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3474 | 30.5172 | 177 | 580.0 |
0.079 | 4.5 | 738 | 0.0771 | 0.7103 | 0.0345 | 0.7103 | 0.7103 | 0.0 | [0.7103448275862069, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3552 | 28.9655 | 168 | 580.0 |
0.0712 | 5.0 | 820 | 0.0675 | 0.7043 | 0.0517 | 0.7034 | 0.7034 | 0.0 | [0.7051724137931035, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3526 | 29.4828 | 171 | 580.0 |
0.0712 | 5.5 | 902 | 0.0657 | 0.7138 | 0.0603 | 0.7138 | 0.7138 | 0.0 | [0.7137931034482758, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3569 | 28.6207 | 166 | 580.0 |
0.065 | 6.0 | 984 | 0.0670 | 0.7052 | 0.0621 | 0.7069 | 0.7069 | 0.0 | [0.7068965517241379, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3534 | 29.3103 | 170 | 580.0 |
0.065 | 6.5 | 1066 | 0.0658 | 0.7086 | 0.0672 | 0.7103 | 0.7086 | 0.0 | [0.7103448275862069, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3552 | 28.9655 | 168 | 580.0 |
0.0596 | 7.0 | 1148 | 0.0741 | 0.7138 | 0.0586 | 0.7155 | 0.7155 | 0.0 | [0.7155172413793104, 0.0, 0.0, 0.0] | 1.0 | 1.0 | 580 | 580 | 0.3578 | 28.4483 | 165 | 580.0 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
Citation Information
Uludoğan, G., Balal, Z. Y., Akkurt, F., Türker, M., Güngör, O., & Üsküdarlı, S. (2024).
Turna: A turkish encoder-decoder language model for enhanced understanding and generation. arXiv preprint arXiv:2401.14373.
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Holmeister/TURNA_TSATweets_cond_gen_no_instruction
Base model
google/mt5-large