Hoonvolution's picture
End of training
713ebc2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - Hoonvolution/hoons_music_data
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-hoon_music
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Hoons music data
          type: Hoonvolution/hoons_music_data
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.84375

distilhubert-finetuned-hoon_music

This model is a fine-tuned version of ntu-spml/distilhubert on the Hoons music data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7307
  • Accuracy: 0.8438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6265 1.0 298 1.7652 0.3792
0.9028 2.0 596 1.0772 0.6479
0.3958 3.0 894 0.7857 0.7812
0.2335 4.0 1192 0.5601 0.8521
0.1384 5.0 1490 0.8042 0.8229
0.0517 6.0 1788 0.7031 0.85
0.0025 7.0 2086 0.7261 0.8479
0.0018 8.0 2384 0.7103 0.85
0.0015 9.0 2682 0.7329 0.8458
0.0015 10.0 2980 0.7307 0.8438

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1