prateeky2806's picture
Training in progress, step 800
1e3b791
{
"best_metric": 0.8391241431236267,
"best_model_checkpoint": "./output_v2/7b_cluster031_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_031/checkpoint-800",
"epoch": 0.5503955968352253,
"global_step": 800,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.9502,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.9426,
"step": 20
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.9682,
"step": 30
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8517,
"step": 40
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8944,
"step": 50
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8608,
"step": 60
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.915,
"step": 70
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8349,
"step": 80
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8912,
"step": 90
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.876,
"step": 100
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8697,
"step": 110
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8604,
"step": 120
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8654,
"step": 130
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.8804,
"step": 140
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.8355,
"step": 150
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.8704,
"step": 160
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.8241,
"step": 170
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.8523,
"step": 180
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.845,
"step": 190
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8681,
"step": 200
},
{
"epoch": 0.14,
"eval_loss": 0.8539559245109558,
"eval_runtime": 189.7934,
"eval_samples_per_second": 5.269,
"eval_steps_per_second": 2.634,
"step": 200
},
{
"epoch": 0.14,
"mmlu_eval_accuracy": 0.47295530665862845,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.4117647058823529,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.2187759077891358,
"step": 200
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8902,
"step": 210
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.9119,
"step": 220
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8849,
"step": 230
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.8345,
"step": 240
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.8418,
"step": 250
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.8305,
"step": 260
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.8525,
"step": 270
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.8523,
"step": 280
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.8511,
"step": 290
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.8297,
"step": 300
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.8213,
"step": 310
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.8225,
"step": 320
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.8359,
"step": 330
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.8326,
"step": 340
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.832,
"step": 350
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.8208,
"step": 360
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.8427,
"step": 370
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.8812,
"step": 380
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.9016,
"step": 390
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.8694,
"step": 400
},
{
"epoch": 0.28,
"eval_loss": 0.8468822240829468,
"eval_runtime": 189.8705,
"eval_samples_per_second": 5.267,
"eval_steps_per_second": 2.633,
"step": 400
},
{
"epoch": 0.28,
"mmlu_eval_accuracy": 0.45864815481629223,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.3870967741935484,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9554785659084433,
"step": 400
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.8383,
"step": 410
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.8315,
"step": 420
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.8613,
"step": 430
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.865,
"step": 440
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.8028,
"step": 450
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.8557,
"step": 460
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.8834,
"step": 470
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.8468,
"step": 480
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.8556,
"step": 490
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.8591,
"step": 500
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.8683,
"step": 510
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.8278,
"step": 520
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.8208,
"step": 530
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.8372,
"step": 540
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.8144,
"step": 550
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.8783,
"step": 560
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.8337,
"step": 570
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.8572,
"step": 580
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.8275,
"step": 590
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.8599,
"step": 600
},
{
"epoch": 0.41,
"eval_loss": 0.84308922290802,
"eval_runtime": 189.8586,
"eval_samples_per_second": 5.267,
"eval_steps_per_second": 2.634,
"step": 600
},
{
"epoch": 0.41,
"mmlu_eval_accuracy": 0.45447446268908714,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.3125,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.23076923076923078,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.22,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.43478260869565216,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9984549878082449,
"step": 600
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.8279,
"step": 610
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.8363,
"step": 620
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.8698,
"step": 630
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.8407,
"step": 640
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.8555,
"step": 650
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.8393,
"step": 660
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.8527,
"step": 670
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.8666,
"step": 680
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.8584,
"step": 690
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.8583,
"step": 700
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.8524,
"step": 710
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.8543,
"step": 720
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.8687,
"step": 730
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.8593,
"step": 740
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.8365,
"step": 750
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.8718,
"step": 760
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.8362,
"step": 770
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.8114,
"step": 780
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.8611,
"step": 790
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.8521,
"step": 800
},
{
"epoch": 0.55,
"eval_loss": 0.8391241431236267,
"eval_runtime": 189.8022,
"eval_samples_per_second": 5.269,
"eval_steps_per_second": 2.634,
"step": 800
},
{
"epoch": 0.55,
"mmlu_eval_accuracy": 0.4694480562846655,
"mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.3125,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.4375,
"mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6666666666666666,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322,
"mmlu_eval_accuracy_professional_law": 0.31176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0093606002337006,
"step": 800
}
],
"max_steps": 5000,
"num_train_epochs": 4,
"total_flos": 1.4473563545228083e+17,
"trial_name": null,
"trial_params": null
}