Llama-3.1-8B-Omni / README.md
nielsr's picture
nielsr HF staff
Add pipeline tag
2f3de3a verified
|
raw
history blame
5.11 kB
---
license: other
language:
- en
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
pipeline_tag: audio-to-audio
tags:
- large language models
- speech-language models
- speech interaction
- speech-to-speech
library_name: llama-omni
---
# πŸ¦™πŸŽ§ LLaMA-Omni: Seamless Speech Interaction with Large Language Models
> **Authors: [Qingkai Fang](https://fangqingkai.github.io/), [Shoutao Guo](https://scholar.google.com/citations?hl=en&user=XwHtPyAAAAAJ), [Yan Zhou](https://zhouyan19.github.io/zhouyan/), [Zhengrui Ma](https://scholar.google.com.hk/citations?user=dUgq6tEAAAAJ), [Shaolei Zhang](https://zhangshaolei1998.github.io/), [Yang Feng*](https://people.ucas.edu.cn/~yangfeng?language=en)**
[[Paper]](https://arxiv.org/abs/2409.06666) [[Model]](https://huggingface.co/ICTNLP/Llama-3.1-8B-Omni) [[Code]](https://github.com/ictnlp/LLaMA-Omni)
LLaMA-Omni is a speech-language model built upon Llama-3.1-8B-Instruct. It supports low-latency and high-quality speech interactions, simultaneously generating both text and speech responses based on speech instructions.
![](images/model.png)
## πŸ’‘ Highlights
- πŸ’ͺ **Built on Llama-3.1-8B-Instruct, ensuring high-quality responses.**
- πŸš€ **Low-latency speech interaction with a latency as low as 226ms.**
- 🎧 **Simultaneous generation of both text and speech responses.**
- ♻️ **Trained in less than 3 days using just 4 GPUs.**
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65b7573482d384513443875e/dr4XWUxzuVQ52lBuzNBTt.mp4"></video>
## Install
1. Clone this repository.
```shell
git clone https://github.com/ictnlp/LLaMA-Omni
cd LLaMA-Omni
```
2. Install packages.
```shell
conda create -n llama-omni python=3.10
conda activate llama-omni
pip install pip==24.0
pip install -e .
```
3. Install `fairseq`.
```shell
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install -e . --no-build-isolation
```
4. Install `flash-attention`.
```shell
pip install flash-attn --no-build-isolation
```
## Quick Start
1. Download the `Llama-3.1-8B-Omni` model from πŸ€—[Huggingface](https://huggingface.co/ICTNLP/Llama-3.1-8B-Omni).
2. Download the `Whisper-large-v3` model.
```shell
import whisper
model = whisper.load_model("large-v3", download_root="models/speech_encoder/")
```
3. Download the unit-based HiFi-GAN vocoder.
```shell
wget https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000 -P vocoder/
wget https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/config.json -P vocoder/
```
## Gradio Demo
1. Launch a controller.
```shell
python -m omni_speech.serve.controller --host 0.0.0.0 --port 10000
```
2. Launch a gradio web server.
```shell
python -m omni_speech.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --model-list-mode reload --vocoder vocoder/g_00500000 --vocoder-cfg vocoder/config.json
```
3. Launch a model worker.
```shell
python -m omni_speech.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path Llama-3.1-8B-Omni --model-name Llama-3.1-8B-Omni --s2s
```
4. Visit [http://localhost:8000/](http://localhost:8000/) and interact with LLaMA-3.1-8B-Omni!
**Note: Due to the instability of streaming audio playback in Gradio, we have only implemented streaming audio synthesis without enabling autoplay. If you have a good solution, feel free to submit a PR. Thanks!**
## Local Inference
To run inference locally, please organize the speech instruction files according to the format in the `omni_speech/infer/examples` directory, then refer to the following script.
```shell
bash omni_speech/infer/run.sh omni_speech/infer/examples
```
## LICENSE
Our code is released under the Apache-2.0 License. Our model is intended for academic research purposes only and may **NOT** be used for commercial purposes.
You are free to use, modify, and distribute this model in academic settings, provided that the following conditions are met:
- **Non-commercial use**: The model may not be used for any commercial purposes.
- **Citation**: If you use this model in your research, please cite the original work.
### Commercial Use Restriction
For any commercial use inquiries or to obtain a commercial license, please contact `[email protected]`.
## Acknowledgements
- [LLaVA](https://github.com/haotian-liu/LLaVA): The codebase we built upon.
- [SLAM-LLM](https://github.com/X-LANCE/SLAM-LLM): We borrow some code about speech encoder and speech adaptor.
## Citation
If you have any questions, please feel free to submit an issue or contact `[email protected]`.
If our work is useful for you, please cite as:
```
@article{fang-etal-2024-llama-omni,
title={LLaMA-Omni: Seamless Speech Interaction with Large Language Models},
author={Fang, Qingkai and Guo, Shoutao and Zhou, Yan and Ma, Zhengrui and Zhang, Shaolei and Feng, Yang},
journal={arXiv preprint arXiv:2409.06666},
year={2024}
}
```