Edit model card

XLM-EusBERTa-sentiment-classification

This model is a fine-tuned version of ClassCat/roberta-small-basque on the basque_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0012
  • Accuracy: 0.6290
  • F1: 0.6291
  • Precision: 0.6303
  • Recall: 0.6290

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 380 0.7366 0.6736 0.6589 0.6711 0.6736
0.7679 2.0 760 0.7654 0.6767 0.6692 0.6726 0.6767
0.4846 3.0 1140 0.9844 0.6621 0.6599 0.6681 0.6621
0.2952 4.0 1520 1.1162 0.6375 0.6371 0.6473 0.6375
0.2952 5.0 1900 1.4234 0.6329 0.6343 0.6425 0.6329
0.192 6.0 2280 1.8570 0.6413 0.6362 0.6424 0.6413
0.159 7.0 2660 2.1968 0.6152 0.6086 0.6152 0.6152
0.1265 8.0 3040 2.1853 0.6283 0.6267 0.6267 0.6283
0.1265 9.0 3420 2.1953 0.6467 0.6441 0.6435 0.6467
0.0807 10.0 3800 2.2806 0.6367 0.6381 0.6480 0.6367
0.0688 11.0 4180 2.7982 0.6175 0.6167 0.6356 0.6175
0.0675 12.0 4560 2.5182 0.6605 0.6587 0.6584 0.6605
0.0675 13.0 4940 2.6544 0.6413 0.6315 0.6391 0.6413
0.0451 14.0 5320 2.5889 0.6459 0.6427 0.6424 0.6459
0.0432 15.0 5700 2.8100 0.6290 0.6299 0.6359 0.6290
0.0297 16.0 6080 2.9983 0.6275 0.6262 0.6263 0.6275
0.0297 17.0 6460 2.7803 0.6313 0.6289 0.6311 0.6313
0.0369 18.0 6840 2.9602 0.6283 0.6287 0.6353 0.6283
0.0289 19.0 7220 2.9911 0.6298 0.6309 0.6356 0.6298
0.0251 20.0 7600 2.8634 0.6344 0.6350 0.6364 0.6344
0.0251 21.0 7980 2.7171 0.6406 0.6378 0.6375 0.6406
0.0332 22.0 8360 3.0386 0.6275 0.6215 0.6245 0.6275
0.0212 23.0 8740 2.9876 0.6313 0.6319 0.6344 0.6313
0.0218 24.0 9120 2.9776 0.6283 0.6267 0.6348 0.6283
0.0189 25.0 9500 2.9596 0.6329 0.6340 0.6381 0.6329
0.0189 26.0 9880 3.0420 0.6329 0.6324 0.6380 0.6329
0.0172 27.0 10260 3.3335 0.6336 0.6348 0.6369 0.6336
0.0054 28.0 10640 3.2843 0.6429 0.6442 0.6466 0.6429
0.0065 29.0 11020 3.4868 0.6275 0.6291 0.6399 0.6275
0.0065 30.0 11400 3.8241 0.6175 0.6174 0.6209 0.6175
0.0108 31.0 11780 3.5833 0.6260 0.6275 0.6317 0.6260
0.0127 32.0 12160 3.5452 0.6183 0.6203 0.6283 0.6183
0.0092 33.0 12540 3.8349 0.6167 0.6167 0.6389 0.6167
0.0092 34.0 12920 3.6464 0.6244 0.6260 0.6313 0.6244
0.0069 35.0 13300 3.7538 0.6352 0.6352 0.6359 0.6352
0.0028 36.0 13680 3.8862 0.6221 0.6243 0.6350 0.6221
0.0001 37.0 14060 3.9846 0.6229 0.6206 0.6252 0.6229
0.0001 38.0 14440 3.7743 0.6275 0.6287 0.6309 0.6275
0.0057 39.0 14820 3.9002 0.6290 0.6300 0.6319 0.6290
0.0004 40.0 15200 3.9651 0.6306 0.6315 0.6333 0.6306
0.0032 41.0 15580 4.0279 0.6206 0.6213 0.6365 0.6206
0.0032 42.0 15960 3.8244 0.6344 0.6342 0.6344 0.6344
0.0033 43.0 16340 3.9036 0.6198 0.6205 0.6237 0.6198
0.003 44.0 16720 4.0028 0.6198 0.6214 0.6263 0.6198
0.0005 45.0 17100 3.9621 0.6306 0.6315 0.6361 0.6306
0.0005 46.0 17480 3.9682 0.6306 0.6297 0.6298 0.6306
0.0003 47.0 17860 4.0103 0.6321 0.6310 0.6305 0.6321
0.0003 48.0 18240 3.9968 0.6321 0.6316 0.6317 0.6321
0.003 49.0 18620 3.9835 0.6298 0.6297 0.6304 0.6298
0.0005 50.0 19000 4.0012 0.6290 0.6291 0.6303 0.6290

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
9
Safetensors
Model size
51.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for IParraMartin/XLM-EusBERTa-sentiment-classification

Finetuned
(2)
this model

Evaluation results