log_sage_reward_model
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the hdfs_rlhf_log_summary_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.4242
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 0.6936 | 0.8 |
No log | 2.0 | 3 | 0.6931 | 0.8 |
No log | 3.0 | 5 | 0.6928 | 1.0 |
No log | 4.0 | 6 | 0.6927 | 1.0 |
No log | 5.0 | 8 | 0.6923 | 1.0 |
0.2849 | 6.0 | 10 | 0.6915 | 1.0 |
0.2849 | 7.0 | 11 | 0.6908 | 1.0 |
0.2849 | 8.0 | 13 | 0.6889 | 1.0 |
0.2849 | 9.0 | 15 | 0.6838 | 1.0 |
0.2849 | 10.0 | 16 | 0.6788 | 1.0 |
0.2849 | 11.0 | 18 | 0.6633 | 1.0 |
0.2669 | 12.0 | 20 | 0.6464 | 1.0 |
0.2669 | 13.0 | 21 | 0.6422 | 1.0 |
0.2669 | 14.0 | 23 | 0.6312 | 1.0 |
0.2669 | 15.0 | 25 | 0.5991 | 1.0 |
0.2669 | 16.0 | 26 | 0.5796 | 1.0 |
0.2669 | 17.0 | 27 | 0.5571 | 1.0 |
0.2669 | 18.0 | 29 | 0.5255 | 1.0 |
0.2252 | 19.0 | 31 | 0.5055 | 1.0 |
0.2252 | 20.0 | 32 | 0.4967 | 1.0 |
0.2252 | 21.0 | 34 | 0.4841 | 1.0 |
0.2252 | 22.0 | 36 | 0.4742 | 1.0 |
0.2252 | 23.0 | 37 | 0.4700 | 1.0 |
0.2252 | 24.0 | 39 | 0.4633 | 1.0 |
0.1245 | 25.0 | 41 | 0.4573 | 1.0 |
0.1245 | 26.0 | 42 | 0.4547 | 1.0 |
0.1245 | 27.0 | 44 | 0.4501 | 1.0 |
0.1245 | 28.0 | 46 | 0.4462 | 1.0 |
0.1245 | 29.0 | 47 | 0.4444 | 1.0 |
0.1245 | 30.0 | 49 | 0.4415 | 1.0 |
0.0996 | 31.0 | 51 | 0.4390 | 1.0 |
0.0996 | 32.0 | 52 | 0.4378 | 1.0 |
0.0996 | 33.0 | 53 | 0.4368 | 1.0 |
0.0996 | 34.0 | 55 | 0.4349 | 1.0 |
0.0996 | 35.0 | 57 | 0.4333 | 1.0 |
0.0996 | 36.0 | 58 | 0.4326 | 1.0 |
0.0862 | 37.0 | 60 | 0.4315 | 1.0 |
0.0862 | 38.0 | 62 | 0.4306 | 1.0 |
0.0862 | 39.0 | 63 | 0.4301 | 1.0 |
0.0862 | 40.0 | 65 | 0.4294 | 1.0 |
0.0862 | 41.0 | 67 | 0.4288 | 1.0 |
0.0862 | 42.0 | 68 | 0.4285 | 1.0 |
0.0765 | 43.0 | 70 | 0.4281 | 1.0 |
0.0765 | 44.0 | 72 | 0.4276 | 1.0 |
0.0765 | 45.0 | 73 | 0.4272 | 1.0 |
0.0765 | 46.0 | 75 | 0.4265 | 1.0 |
0.0765 | 47.0 | 77 | 0.4261 | 1.0 |
0.0765 | 48.0 | 78 | 0.4259 | 1.0 |
0.0765 | 49.0 | 79 | 0.4257 | 1.0 |
0.0783 | 50.0 | 81 | 0.4253 | 1.0 |
0.0783 | 51.0 | 83 | 0.4250 | 1.0 |
0.0783 | 52.0 | 84 | 0.4249 | 1.0 |
0.0783 | 53.0 | 86 | 0.4247 | 1.0 |
0.0783 | 54.0 | 88 | 0.4246 | 1.0 |
0.0783 | 55.0 | 89 | 0.4245 | 1.0 |
0.0652 | 56.0 | 91 | 0.4244 | 1.0 |
0.0652 | 57.0 | 93 | 0.4243 | 1.0 |
0.0652 | 58.0 | 94 | 0.4243 | 1.0 |
0.0652 | 59.0 | 96 | 0.4242 | 1.0 |
0.0652 | 60.0 | 98 | 0.4242 | 1.0 |
0.0652 | 61.0 | 99 | 0.4242 | 1.0 |
0.0655 | 61.09 | 100 | 0.4242 | 1.0 |
Framework versions
- Transformers 4.39.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for IrwinD/log_sage_reward_model
Base model
distilbert/distilbert-base-uncasedEvaluation results
- Accuracy on hdfs_rlhf_log_summary_datasetself-reported1.000