File size: 5,651 Bytes
6bdfcab
 
 
 
6e34384
 
6bdfcab
 
 
6e34384
 
6bdfcab
 
6e34384
 
 
 
 
 
 
 
 
 
 
 
 
 
6bdfcab
 
 
 
 
 
 
 
 
4b9c9d6
6e34384
6bdfcab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc4fc1
 
6bdfcab
6e34384
8cc4fc1
6bdfcab
 
b65d966
6bdfcab
 
 
6e34384
 
4b9c9d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bdfcab
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- trl
- reward-trainer
- generated_from_trainer
datasets:
- hdfs_rlhf_log_summary_dataset
metrics:
- accuracy
model-index:
- name: log_sage_reward_model
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: hdfs_rlhf_log_summary_dataset
      type: hdfs_rlhf_log_summary_dataset
      config: default
      split: None
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# log_sage_reward_model

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the hdfs_rlhf_log_summary_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4242
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 1    | 0.6936          | 0.8      |
| No log        | 2.0   | 3    | 0.6931          | 0.8      |
| No log        | 3.0   | 5    | 0.6928          | 1.0      |
| No log        | 4.0   | 6    | 0.6927          | 1.0      |
| No log        | 5.0   | 8    | 0.6923          | 1.0      |
| 0.2849        | 6.0   | 10   | 0.6915          | 1.0      |
| 0.2849        | 7.0   | 11   | 0.6908          | 1.0      |
| 0.2849        | 8.0   | 13   | 0.6889          | 1.0      |
| 0.2849        | 9.0   | 15   | 0.6838          | 1.0      |
| 0.2849        | 10.0  | 16   | 0.6788          | 1.0      |
| 0.2849        | 11.0  | 18   | 0.6633          | 1.0      |
| 0.2669        | 12.0  | 20   | 0.6464          | 1.0      |
| 0.2669        | 13.0  | 21   | 0.6422          | 1.0      |
| 0.2669        | 14.0  | 23   | 0.6312          | 1.0      |
| 0.2669        | 15.0  | 25   | 0.5991          | 1.0      |
| 0.2669        | 16.0  | 26   | 0.5796          | 1.0      |
| 0.2669        | 17.0  | 27   | 0.5571          | 1.0      |
| 0.2669        | 18.0  | 29   | 0.5255          | 1.0      |
| 0.2252        | 19.0  | 31   | 0.5055          | 1.0      |
| 0.2252        | 20.0  | 32   | 0.4967          | 1.0      |
| 0.2252        | 21.0  | 34   | 0.4841          | 1.0      |
| 0.2252        | 22.0  | 36   | 0.4742          | 1.0      |
| 0.2252        | 23.0  | 37   | 0.4700          | 1.0      |
| 0.2252        | 24.0  | 39   | 0.4633          | 1.0      |
| 0.1245        | 25.0  | 41   | 0.4573          | 1.0      |
| 0.1245        | 26.0  | 42   | 0.4547          | 1.0      |
| 0.1245        | 27.0  | 44   | 0.4501          | 1.0      |
| 0.1245        | 28.0  | 46   | 0.4462          | 1.0      |
| 0.1245        | 29.0  | 47   | 0.4444          | 1.0      |
| 0.1245        | 30.0  | 49   | 0.4415          | 1.0      |
| 0.0996        | 31.0  | 51   | 0.4390          | 1.0      |
| 0.0996        | 32.0  | 52   | 0.4378          | 1.0      |
| 0.0996        | 33.0  | 53   | 0.4368          | 1.0      |
| 0.0996        | 34.0  | 55   | 0.4349          | 1.0      |
| 0.0996        | 35.0  | 57   | 0.4333          | 1.0      |
| 0.0996        | 36.0  | 58   | 0.4326          | 1.0      |
| 0.0862        | 37.0  | 60   | 0.4315          | 1.0      |
| 0.0862        | 38.0  | 62   | 0.4306          | 1.0      |
| 0.0862        | 39.0  | 63   | 0.4301          | 1.0      |
| 0.0862        | 40.0  | 65   | 0.4294          | 1.0      |
| 0.0862        | 41.0  | 67   | 0.4288          | 1.0      |
| 0.0862        | 42.0  | 68   | 0.4285          | 1.0      |
| 0.0765        | 43.0  | 70   | 0.4281          | 1.0      |
| 0.0765        | 44.0  | 72   | 0.4276          | 1.0      |
| 0.0765        | 45.0  | 73   | 0.4272          | 1.0      |
| 0.0765        | 46.0  | 75   | 0.4265          | 1.0      |
| 0.0765        | 47.0  | 77   | 0.4261          | 1.0      |
| 0.0765        | 48.0  | 78   | 0.4259          | 1.0      |
| 0.0765        | 49.0  | 79   | 0.4257          | 1.0      |
| 0.0783        | 50.0  | 81   | 0.4253          | 1.0      |
| 0.0783        | 51.0  | 83   | 0.4250          | 1.0      |
| 0.0783        | 52.0  | 84   | 0.4249          | 1.0      |
| 0.0783        | 53.0  | 86   | 0.4247          | 1.0      |
| 0.0783        | 54.0  | 88   | 0.4246          | 1.0      |
| 0.0783        | 55.0  | 89   | 0.4245          | 1.0      |
| 0.0652        | 56.0  | 91   | 0.4244          | 1.0      |
| 0.0652        | 57.0  | 93   | 0.4243          | 1.0      |
| 0.0652        | 58.0  | 94   | 0.4243          | 1.0      |
| 0.0652        | 59.0  | 96   | 0.4242          | 1.0      |
| 0.0652        | 60.0  | 98   | 0.4242          | 1.0      |
| 0.0652        | 61.0  | 99   | 0.4242          | 1.0      |
| 0.0655        | 61.09 | 100  | 0.4242          | 1.0      |


### Framework versions

- Transformers 4.39.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2