Isaacgv's picture
update model card README.md
56668c6
|
raw
history blame
3.5 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.86

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8540
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2594 1.0 57 2.2216 0.37
1.941 2.0 114 1.8715 0.59
1.4613 3.0 171 1.4244 0.65
1.2449 4.0 228 1.1359 0.71
0.8682 5.0 285 0.9472 0.74
0.6808 6.0 342 0.7817 0.78
0.4759 7.0 399 0.7428 0.74
0.3316 8.0 456 0.6441 0.78
0.2228 9.0 513 0.5838 0.83
0.1367 10.0 570 0.5843 0.86
0.0921 11.0 627 0.5745 0.86
0.0462 12.0 684 0.7029 0.83
0.0513 13.0 741 0.7116 0.86
0.0151 14.0 798 0.7017 0.86
0.0113 15.0 855 0.7439 0.85
0.0572 16.0 912 0.7691 0.84
0.0073 17.0 969 0.7918 0.84
0.0076 18.0 1026 0.8202 0.84
0.0053 19.0 1083 0.8238 0.86
0.0547 20.0 1140 0.8147 0.86
0.0045 21.0 1197 0.8201 0.86
0.004 22.0 1254 0.8282 0.83
0.0038 23.0 1311 0.8387 0.86
0.0035 24.0 1368 0.8398 0.86
0.0033 25.0 1425 0.8403 0.86
0.0031 26.0 1482 0.8464 0.86
0.0032 27.0 1539 0.8456 0.86
0.0031 28.0 1596 0.8505 0.86
0.0031 29.0 1653 0.8517 0.86
0.003 30.0 1710 0.8540 0.86

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.0
  • Tokenizers 0.13.3