ai4privacy_v2_adapter_it
This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0807
- Overall Precision: 0.8556
- Overall Recall: 0.8901
- Overall F1: 0.8725
- Overall Accuracy: 0.9669
- Accountname F1: 0.9869
- Accountnumber F1: 0.9762
- Age F1: 0.9719
- Amount F1: 0.7971
- Bic F1: 0.9536
- Bitcoinaddress F1: 0.9092
- Buildingnumber F1: 0.8371
- City F1: 0.8562
- Companyname F1: 0.9699
- County F1: 0.8920
- Creditcardcvv F1: 0.8794
- Creditcardissuer F1: 0.9681
- Creditcardnumber F1: 0.8276
- Currency F1: 0.5914
- Currencycode F1: 0.6059
- Currencyname F1: 0.0
- Currencysymbol F1: 0.8541
- Date F1: 0.6932
- Dob F1: 0.4620
- Email F1: 0.9911
- Ethereumaddress F1: 0.9856
- Eyecolor F1: 0.9257
- Firstname F1: 0.8746
- Gender F1: 0.9656
- Height F1: 0.9689
- Iban F1: 0.9936
- Ip F1: 0.0
- Ipv4 F1: 0.8059
- Ipv6 F1: 0.7656
- Jobarea F1: 0.9611
- Jobtitle F1: 0.9633
- Jobtype F1: 0.9625
- Lastname F1: 0.8054
- Litecoinaddress F1: 0.7454
- Mac F1: 0.9646
- Maskednumber F1: 0.7425
- Middlename F1: 0.4467
- Nearbygpscoordinate F1: 0.9989
- Ordinaldirection F1: 0.9868
- Password F1: 0.9839
- Phoneimei F1: 0.9878
- Phonenumber F1: 0.9787
- Pin F1: 0.6881
- Prefix F1: 0.9727
- Secondaryaddress F1: 0.9697
- Sex F1: 0.9858
- Ssn F1: 0.9778
- State F1: 0.8914
- Street F1: 0.8813
- Time F1: 0.9567
- Url F1: 0.9915
- Useragent F1: 0.9769
- Username F1: 0.9686
- Vehiclevin F1: 0.9635
- Vehiclevrm F1: 0.9747
- Zipcode F1: 0.8485
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1 | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.7047 | 1.0 | 1275 | 0.3394 | 0.3552 | 0.4679 | 0.4038 | 0.8991 | 0.7758 | 0.6518 | 0.8829 | 0.1009 | 0.3687 | 0.7553 | 0.3720 | 0.0 | 0.1118 | 0.0698 | 0.0 | 0.0 | 0.5544 | 0.0 | 0.0 | 0.0 | 0.2279 | 0.3929 | 0.0953 | 0.9181 | 0.8440 | 0.0 | 0.3652 | 0.1346 | 0.1034 | 0.8137 | 0.0 | 0.7184 | 0.6402 | 0.0143 | 0.5859 | 0.0 | 0.0661 | 0.0 | 0.7596 | 0.0112 | 0.0 | 0.9590 | 0.0 | 0.7307 | 0.9290 | 0.4443 | 0.0 | 0.0132 | 0.5173 | 0.6060 | 0.1941 | 0.0113 | 0.1307 | 0.7603 | 0.9491 | 0.8830 | 0.0048 | 0.4413 | 0.1774 | 0.3969 |
0.16 | 2.0 | 2550 | 0.1239 | 0.7404 | 0.8016 | 0.7698 | 0.9550 | 0.9820 | 0.9461 | 0.9464 | 0.4123 | 0.6098 | 0.8438 | 0.7318 | 0.5930 | 0.9095 | 0.6646 | 0.7774 | 0.9154 | 0.6495 | 0.4255 | 0.3522 | 0.0 | 0.6151 | 0.5260 | 0.1902 | 0.9729 | 0.9601 | 0.6775 | 0.8040 | 0.7830 | 0.8411 | 0.9417 | 0.0 | 0.8056 | 0.7966 | 0.8342 | 0.9225 | 0.7701 | 0.6583 | 0.5681 | 0.9002 | 0.6007 | 0.0633 | 0.9935 | 0.9803 | 0.9649 | 0.9900 | 0.9462 | 0.0103 | 0.9599 | 0.9538 | 0.9509 | 0.9607 | 0.7129 | 0.7718 | 0.9339 | 0.9847 | 0.9481 | 0.8711 | 0.9539 | 0.8225 | 0.6985 |
0.1169 | 3.0 | 3825 | 0.1027 | 0.7616 | 0.8481 | 0.8025 | 0.9573 | 0.9836 | 0.9518 | 0.9628 | 0.5499 | 0.9358 | 0.9409 | 0.7946 | 0.7442 | 0.9514 | 0.8136 | 0.8579 | 0.9422 | 0.7882 | 0.5091 | 0.5460 | 0.0 | 0.6629 | 0.7015 | 0.3203 | 0.9834 | 0.9885 | 0.8499 | 0.8486 | 0.9179 | 0.9423 | 0.9465 | 0.0086 | 0.8009 | 0.3113 | 0.9312 | 0.9444 | 0.9125 | 0.7483 | 0.7813 | 0.9513 | 0.6076 | 0.3184 | 0.9957 | 0.9837 | 0.9646 | 0.9911 | 0.9541 | 0.3744 | 0.9662 | 0.9657 | 0.9781 | 0.9667 | 0.7927 | 0.8152 | 0.9317 | 0.9890 | 0.9595 | 0.9338 | 0.9545 | 0.9578 | 0.7431 |
0.0928 | 4.0 | 5100 | 0.0893 | 0.8261 | 0.8714 | 0.8482 | 0.9647 | 0.9861 | 0.9574 | 0.9691 | 0.6684 | 0.9497 | 0.9340 | 0.8159 | 0.8093 | 0.9498 | 0.8534 | 0.87 | 0.9569 | 0.7950 | 0.5274 | 0.5591 | 0.0 | 0.7556 | 0.5915 | 0.4577 | 0.9893 | 0.9828 | 0.8894 | 0.8577 | 0.9431 | 0.9630 | 0.9801 | 0.0 | 0.8068 | 0.8130 | 0.9414 | 0.9530 | 0.9425 | 0.7637 | 0.8190 | 0.9515 | 0.6809 | 0.4021 | 0.9989 | 0.9868 | 0.9747 | 0.9878 | 0.9736 | 0.6169 | 0.9639 | 0.9649 | 0.9851 | 0.9778 | 0.8287 | 0.8536 | 0.9459 | 0.9890 | 0.9567 | 0.9385 | 0.9408 | 0.9531 | 0.8158 |
0.0827 | 5.0 | 6375 | 0.0821 | 0.8531 | 0.8845 | 0.8685 | 0.9666 | 0.9885 | 0.9687 | 0.9712 | 0.7602 | 0.9500 | 0.9053 | 0.8303 | 0.8370 | 0.9699 | 0.8782 | 0.8691 | 0.9709 | 0.8098 | 0.5908 | 0.6369 | 0.0 | 0.8270 | 0.6587 | 0.4759 | 0.9881 | 0.9871 | 0.9303 | 0.8716 | 0.9633 | 0.9727 | 0.9810 | 0.0 | 0.8149 | 0.8104 | 0.9588 | 0.9655 | 0.9573 | 0.8000 | 0.7339 | 0.9690 | 0.7423 | 0.4433 | 0.9989 | 0.9868 | 0.9831 | 0.9944 | 0.9787 | 0.6794 | 0.9735 | 0.9681 | 0.9858 | 0.9787 | 0.8805 | 0.8731 | 0.9544 | 0.9907 | 0.9740 | 0.9616 | 0.9536 | 0.9650 | 0.8385 |
0.077 | 6.0 | 7650 | 0.0807 | 0.8556 | 0.8901 | 0.8725 | 0.9669 | 0.9869 | 0.9762 | 0.9719 | 0.7971 | 0.9536 | 0.9092 | 0.8371 | 0.8562 | 0.9699 | 0.8920 | 0.8794 | 0.9681 | 0.8276 | 0.5914 | 0.6059 | 0.0 | 0.8541 | 0.6932 | 0.4620 | 0.9911 | 0.9856 | 0.9257 | 0.8746 | 0.9656 | 0.9689 | 0.9936 | 0.0 | 0.8059 | 0.7656 | 0.9611 | 0.9633 | 0.9625 | 0.8054 | 0.7454 | 0.9646 | 0.7425 | 0.4467 | 0.9989 | 0.9868 | 0.9839 | 0.9878 | 0.9787 | 0.6881 | 0.9727 | 0.9697 | 0.9858 | 0.9778 | 0.8914 | 0.8813 | 0.9567 | 0.9915 | 0.9769 | 0.9686 | 0.9635 | 0.9747 | 0.8485 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1