Edit model card

distilbert-base-uncased_fine_tuned

This model is a fine-tuned version of distilbert-base-uncased on an reddit dataset -for NSFW classification. It was trained on titles + body_text of submissions. It achieves the following results on the evaluation set:

  • Loss: 1.0159
  • Accuracy: {'accuracy': 0.9095537914043252}
  • Recall: {'recall': 0.8936873290793071}
  • Precision: {'precision': 0.916024293389395}
  • F1: {'f1': 0.9047179605490829}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
0.256 1.0 2284 0.2569 {'accuracy': 0.9085683000273748} {'recall': 0.8976754785779398} {'precision': 0.9107514450867052} {'f1': 0.9041661884540342}
0.1948 2.0 4568 0.2471 {'accuracy': 0.9138242540377771} {'recall': 0.8644029170464904} {'precision': 0.9518193224592221} {'f1': 0.9060074047533739}
0.1318 3.0 6852 0.3057 {'accuracy': 0.914207500684369} {'recall': 0.8977894257064722} {'precision': 0.9216282606152767} {'f1': 0.9095526695526697}
0.0865 4.0 9136 0.4174 {'accuracy': 0.9047358335614564} {'recall': 0.8697584320875114} {'precision': 0.9274605103280681} {'f1': 0.8976831706456546}
0.0545 5.0 11420 0.4635 {'accuracy': 0.9095537914043252} {'recall': 0.8849134001823155} {'precision': 0.9236441484300666} {'f1': 0.9038640595903165}
0.0359 6.0 13704 0.5654 {'accuracy': 0.9071448124828908} {'recall': 0.8919781221513218} {'precision': 0.9127798507462687} {'f1': 0.9022591055786076}
0.0262 7.0 15988 0.5568 {'accuracy': 0.8994251300301123} {'recall': 0.900865998176846} {'precision': 0.8910176941282543} {'f1': 0.8959147827072356}
0.0181 8.0 18272 0.6846 {'accuracy': 0.9042430878729811} {'recall': 0.9026891522333638} {'precision': 0.898491550413973} {'f1': 0.9005854601261866}
0.0121 9.0 20556 0.7516 {'accuracy': 0.9071448124828908} {'recall': 0.8990428441203282} {'precision': 0.906896551724138} {'f1': 0.9029526207370108}
0.0119 10.0 22840 0.8614 {'accuracy': 0.9050095811661648} {'recall': 0.9002962625341842} {'precision': 0.9018376897614427} {'f1': 0.9010663169299197}
0.0105 11.0 25124 0.7298 {'accuracy': 0.9105940323022174} {'recall': 0.8907247037374658} {'precision': 0.9206218348839948} {'f1': 0.9054265361672554}
0.0049 12.0 27408 0.9237 {'accuracy': 0.9101560361346839} {'recall': 0.8828623518687329} {'precision': 0.9266834110752302} {'f1': 0.9042422827799498}
0.0026 13.0 29692 0.9489 {'accuracy': 0.9066520667944156} {'recall': 0.8988149498632635} {'precision': 0.9061458931648478} {'f1': 0.9024655340083519}
0.0016 14.0 31976 1.0045 {'accuracy': 0.9099917875718587} {'recall': 0.8963081130355515} {'precision': 0.9146511627906977} {'f1': 0.9053867403314917}
0.0022 15.0 34260 1.0159 {'accuracy': 0.9095537914043252} {'recall': 0.8936873290793071} {'precision': 0.916024293389395} {'f1': 0.9047179605490829}

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.