|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: mit |
|
base_model: pyannote/speaker-diarization-3.1 |
|
tags: |
|
- speaker-diarization |
|
- speaker-segmentation |
|
- generated_from_trainer |
|
datasets: |
|
- diarizers-community/voxconverse |
|
model-index: |
|
- name: JSWOOK/pyannote_3_fine_tuning |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# JSWOOK/pyannote_3_fine_tuning |
|
|
|
This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/voxconverse dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3134 |
|
- Model Preparation Time: 0.0048 |
|
- Der: 0.0888 |
|
- False Alarm: 0.0134 |
|
- Missed Detection: 0.0337 |
|
- Confusion: 0.0417 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| |
|
| No log | 1.0 | 24 | 0.3180 | 0.0048 | 0.0915 | 0.0119 | 0.0385 | 0.0410 | |
|
| 0.1903 | 2.0 | 48 | 0.3116 | 0.0048 | 0.0903 | 0.0125 | 0.0369 | 0.0409 | |
|
| 0.1839 | 3.0 | 72 | 0.3089 | 0.0048 | 0.0896 | 0.0128 | 0.0357 | 0.0411 | |
|
| 0.1825 | 4.0 | 96 | 0.3176 | 0.0048 | 0.0896 | 0.0131 | 0.0352 | 0.0413 | |
|
| 0.1797 | 5.0 | 120 | 0.3148 | 0.0048 | 0.0892 | 0.0132 | 0.0346 | 0.0413 | |
|
| 0.1801 | 6.0 | 144 | 0.3141 | 0.0048 | 0.0890 | 0.0133 | 0.0342 | 0.0415 | |
|
| 0.1735 | 7.0 | 168 | 0.3137 | 0.0048 | 0.0887 | 0.0134 | 0.0338 | 0.0416 | |
|
| 0.1705 | 8.0 | 192 | 0.3133 | 0.0048 | 0.0887 | 0.0134 | 0.0337 | 0.0416 | |
|
| 0.1796 | 9.0 | 216 | 0.3133 | 0.0048 | 0.0887 | 0.0134 | 0.0337 | 0.0417 | |
|
| 0.1644 | 10.0 | 240 | 0.3134 | 0.0048 | 0.0888 | 0.0134 | 0.0337 | 0.0417 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|