wft-test-model / README.md
JacobLinCool's picture
End of training
a383df5 verified
metadata
library_name: peft
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - wft
  - whisper
  - automatic-speech-recognition
  - audio
  - speech
  - generated_from_trainer
datasets:
  - hf-internal-testing/librispeech_asr_dummy
metrics:
  - wer
model-index:
  - name: wft-test-model
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: hf-internal-testing/librispeech_asr_dummy
          type: hf-internal-testing/librispeech_asr_dummy
        metrics:
          - type: wer
            value: 5.905511811023622
            name: Wer

wft-test-model

This model is a fine-tuned version of openai/whisper-tiny on the hf-internal-testing/librispeech_asr_dummy dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1185
  • Wer: 5.9055
  • Cer: 83.2386
  • Decode Time: 0.5299
  • Wer Time: 0.0047
  • Cer Time: 0.0030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Time Wer Time Cer Time
2.4079 0.1 10 1.9885 312.2047 119.2472 0.5334 0.0169 0.0041
1.2303 1.01 20 1.1646 258.2677 100.0 0.5213 1.4057 0.0046
0.8667 1.11 30 0.8100 37.7953 52.3438 0.5008 0.0396 0.0045
0.4517 2.02 40 0.6337 40.9449 73.7926 0.5137 0.0217 0.0030
0.4352 2.12 50 0.4493 16.5354 88.1392 0.5203 0.0054 0.0032
0.2341 3.03 60 0.2922 8.2677 97.5852 0.5434 0.0060 0.0032
0.2233 3.13 70 0.2026 9.0551 83.5227 0.5359 0.0063 0.0033
0.1098 4.04 80 0.1665 5.9055 83.9489 0.5316 0.0056 0.0029
0.0678 4.14 90 0.1279 7.0866 81.1080 0.5388 0.0079 0.0038
0.078 5.05 100 0.1185 5.9055 83.2386 0.5299 0.0047 0.0030

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.5.0
  • Datasets 3.0.2
  • Tokenizers 0.20.1