Edit model card

emotion_classification_v1.2

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2401
  • Accuracy: 0.625
  • Precision: 0.6207
  • Recall: 0.625
  • F1: 0.6035

Model description

A slightly more accurate model compared to previous 1.1 version. More information needed

Intended uses & limitations

This model is fined tune solely for face emotion recognition.

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 20 1.9487 0.3312 0.3554 0.3312 0.2830
No log 2.0 40 1.6735 0.4437 0.4238 0.4437 0.4232
No log 3.0 60 1.5359 0.4813 0.3990 0.4813 0.4272
No log 4.0 80 1.4249 0.5 0.4178 0.5 0.4443
No log 5.0 100 1.3733 0.5062 0.4753 0.5062 0.4653
No log 6.0 120 1.3513 0.5188 0.5076 0.5188 0.4908
No log 7.0 140 1.2377 0.6125 0.6163 0.6125 0.5976
No log 8.0 160 1.2354 0.6062 0.6131 0.6062 0.5961
No log 9.0 180 1.2574 0.575 0.5847 0.575 0.5728
No log 10.0 200 1.2493 0.5813 0.5912 0.5813 0.5776
No log 11.0 220 1.1954 0.5813 0.5795 0.5813 0.5730
No log 12.0 240 1.2283 0.5625 0.5651 0.5625 0.5598
No log 13.0 260 1.1984 0.5625 0.5800 0.5625 0.5643
No log 14.0 280 1.2308 0.5437 0.5523 0.5437 0.5414
No log 15.0 300 1.1665 0.5938 0.6005 0.5938 0.5935

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
24
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JamesJayamuni/emotion_classification_v1.2

Finetuned
(1670)
this model

Evaluation results