summary_train2
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.6767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 17 | 0.9815 |
No log | 2.0 | 34 | 0.9102 |
No log | 3.0 | 51 | 0.8509 |
No log | 4.0 | 68 | 0.8540 |
No log | 5.0 | 85 | 0.8934 |
0.7594 | 6.0 | 102 | 0.9420 |
0.7594 | 7.0 | 119 | 1.0024 |
0.7594 | 8.0 | 136 | 1.1378 |
0.7594 | 9.0 | 153 | 1.2391 |
0.7594 | 10.0 | 170 | 1.3776 |
0.7594 | 11.0 | 187 | 1.5790 |
0.3001 | 12.0 | 204 | 1.8004 |
0.3001 | 13.0 | 221 | 2.0407 |
0.3001 | 14.0 | 238 | 2.2108 |
0.3001 | 15.0 | 255 | 2.3857 |
0.3001 | 16.0 | 272 | 2.5249 |
0.3001 | 17.0 | 289 | 2.6173 |
0.0996 | 18.0 | 306 | 2.6625 |
0.0996 | 19.0 | 323 | 2.6729 |
0.0996 | 20.0 | 340 | 2.6767 |
Framework versions
- PEFT 0.13.1
- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 14
Model tree for JasonBounre/summary_train2
Base model
meta-llama/Meta-Llama-3-8B