metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Walmart Connect provides house advertising offerings.
sentences:
- >-
What was the fair value per performance-based share granted for the
fiscal years 2023, 2022, and 2021?
- What services does Walmart Connect offer?
- By how much did membership fees increase in 2023?
- source_sentence: The total revenue for 2023 was reported as $371,620 million.
sentences:
- What was the percentage increase in Humalog revenue from 2022 to 2023?
- What was the total revenue for the year 2023?
- >-
What were the primary factors influencing profitability in the
automotive market in 2023?
- source_sentence: •LinkedIn revenue increased 10%.
sentences:
- By what percentage did LinkedIn's revenue increase in fiscal year 2023?
- >-
What factors influence the recording of the Company's credit-related
contingent features in financial statements?
- >-
What is the average tenure of associates at the company as of December
31, 2023?
- source_sentence: >-
Cash flows from operating activities in 2023 were primarily generated from
management and franchise fee revenue and operating income from owned and
leased hotels.
sentences:
- >-
What is the significance of the Company’s trademarks to their
businesses?
- >-
By what percentage did the S&P 500 Index increase in 2023 compared to
the end of 2022?
- What were the primary sources of operating activities cash flow in 2023?
- source_sentence: >-
The par call date for the 7% Notes due 2029 is August 15, 2025, allowing
for redemption at par from this date onward.
sentences:
- >-
What is the earliest date on which the 7% Notes due 2029 can be redeemed
at par?
- >-
What are some of the initiatives managed by Visa for supporting
underrepresented communities?
- >-
Who are the competitors for Microsoft's server applications in PC-based
environments?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6942857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8314285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8728571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6942857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17457142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09071428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6942857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8314285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8728571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8042383857063928
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7708656462585032
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7746128511093645
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6985714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8371428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9114285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6985714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09114285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6985714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8371428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9114285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8075815858913178
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7741315192743762
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7776656953157759
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.86
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17199999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0907142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.86
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8048199967282856
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7720073696145123
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.775510167698765
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.67
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8571428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8971428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.67
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0897142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.67
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8571428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8971428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7867880427582347
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7511031746031744
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7551868866444579
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.65
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7914285714285715
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8385714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8785714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.65
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26380952380952377
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16771428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08785714285714286
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.65
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7914285714285715
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8385714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8785714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7645553995345995
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.727849206349206
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.73258711812532
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Jaswanth160/bge-base-financial-matryoshka")
sentences = [
'The par call date for the 7% Notes due 2029 is August 15, 2025, allowing for redemption at par from this date onward.',
'What is the earliest date on which the 7% Notes due 2029 can be redeemed at par?',
'What are some of the initiatives managed by Visa for supporting underrepresented communities?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6943 |
cosine_accuracy@3 |
0.8314 |
cosine_accuracy@5 |
0.8729 |
cosine_accuracy@10 |
0.9071 |
cosine_precision@1 |
0.6943 |
cosine_precision@3 |
0.2771 |
cosine_precision@5 |
0.1746 |
cosine_precision@10 |
0.0907 |
cosine_recall@1 |
0.6943 |
cosine_recall@3 |
0.8314 |
cosine_recall@5 |
0.8729 |
cosine_recall@10 |
0.9071 |
cosine_ndcg@10 |
0.8042 |
cosine_mrr@10 |
0.7709 |
cosine_map@100 |
0.7746 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6986 |
cosine_accuracy@3 |
0.8371 |
cosine_accuracy@5 |
0.87 |
cosine_accuracy@10 |
0.9114 |
cosine_precision@1 |
0.6986 |
cosine_precision@3 |
0.279 |
cosine_precision@5 |
0.174 |
cosine_precision@10 |
0.0911 |
cosine_recall@1 |
0.6986 |
cosine_recall@3 |
0.8371 |
cosine_recall@5 |
0.87 |
cosine_recall@10 |
0.9114 |
cosine_ndcg@10 |
0.8076 |
cosine_mrr@10 |
0.7741 |
cosine_map@100 |
0.7777 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7 |
cosine_accuracy@3 |
0.83 |
cosine_accuracy@5 |
0.86 |
cosine_accuracy@10 |
0.9071 |
cosine_precision@1 |
0.7 |
cosine_precision@3 |
0.2767 |
cosine_precision@5 |
0.172 |
cosine_precision@10 |
0.0907 |
cosine_recall@1 |
0.7 |
cosine_recall@3 |
0.83 |
cosine_recall@5 |
0.86 |
cosine_recall@10 |
0.9071 |
cosine_ndcg@10 |
0.8048 |
cosine_mrr@10 |
0.772 |
cosine_map@100 |
0.7755 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.67 |
cosine_accuracy@3 |
0.8186 |
cosine_accuracy@5 |
0.8571 |
cosine_accuracy@10 |
0.8971 |
cosine_precision@1 |
0.67 |
cosine_precision@3 |
0.2729 |
cosine_precision@5 |
0.1714 |
cosine_precision@10 |
0.0897 |
cosine_recall@1 |
0.67 |
cosine_recall@3 |
0.8186 |
cosine_recall@5 |
0.8571 |
cosine_recall@10 |
0.8971 |
cosine_ndcg@10 |
0.7868 |
cosine_mrr@10 |
0.7511 |
cosine_map@100 |
0.7552 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.65 |
cosine_accuracy@3 |
0.7914 |
cosine_accuracy@5 |
0.8386 |
cosine_accuracy@10 |
0.8786 |
cosine_precision@1 |
0.65 |
cosine_precision@3 |
0.2638 |
cosine_precision@5 |
0.1677 |
cosine_precision@10 |
0.0879 |
cosine_recall@1 |
0.65 |
cosine_recall@3 |
0.7914 |
cosine_recall@5 |
0.8386 |
cosine_recall@10 |
0.8786 |
cosine_ndcg@10 |
0.7646 |
cosine_mrr@10 |
0.7278 |
cosine_map@100 |
0.7326 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 47.11 tokens
- max: 439 tokens
|
- min: 7 tokens
- mean: 20.36 tokens
- max: 51 tokens
|
- Samples:
positive |
anchor |
For some of our medical membership, we share risk with providers under capitation contracts where physicians and hospitals accept varying levels of financial risk for a defined set of membership, primarily HMO membership. |
What is the primary type of membership for which risk is shared with providers under capitation contracts? |
Revenue for Comcast's Theme Parks segment is primarily derived from guest spending at the theme parks, including ticket sales and in-park spending on food, beverages, and merchandise. |
What is the primary revenue source for Comcast's Theme Parks segment? |
In August 2022, the Board of Directors authorized a program to repurchase up to $10.0 billion of the Company’s common stock, referred to as the "Share Repurchase Program". In February 2023, the Board of Directors authorized an additional $10.0 billion in repurchases under the Share Repurchase Program, bringing the aggregate total authorized to $20.0 billion. |
What was the total authorization amount for the Share Repurchase Program of the Company as of February 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5811 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7341 |
0.7568 |
0.7632 |
0.7056 |
0.7660 |
1.6244 |
20 |
0.6854 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7516 |
0.7705 |
0.7722 |
0.7263 |
0.7702 |
2.4365 |
30 |
0.4874 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.755 |
0.7747 |
0.7756 |
0.7321 |
0.7739 |
3.2487 |
40 |
0.3876 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7552 |
0.7755 |
0.7777 |
0.7326 |
0.7746 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}