Jaswanth160's picture
Add new SentenceTransformer model.
0f6f99d verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: Walmart Connect provides house advertising offerings.
    sentences:
      - >-
        What was the fair value per performance-based share granted for the
        fiscal years 2023, 2022, and 2021?
      - What services does Walmart Connect offer?
      - By how much did membership fees increase in 2023?
  - source_sentence: The total revenue for 2023 was reported as $371,620 million.
    sentences:
      - What was the percentage increase in Humalog revenue from 2022 to 2023?
      - What was the total revenue for the year 2023?
      - >-
        What were the primary factors influencing profitability in the
        automotive market in 2023?
  - source_sentence: •LinkedIn revenue increased 10%.
    sentences:
      - By what percentage did LinkedIn's revenue increase in fiscal year 2023?
      - >-
        What factors influence the recording of the Company's credit-related
        contingent features in financial statements?
      - >-
        What is the average tenure of associates at the company as of December
        31, 2023?
  - source_sentence: >-
      Cash flows from operating activities in 2023 were primarily generated from
      management and franchise fee revenue and operating income from owned and
      leased hotels.
    sentences:
      - >-
        What is the significance of the Company’s trademarks to their
        businesses?
      - >-
        By what percentage did the S&P 500 Index increase in 2023 compared to
        the end of 2022?
      - What were the primary sources of operating activities cash flow in 2023?
  - source_sentence: >-
      The par call date for the 7% Notes due 2029 is August 15, 2025, allowing
      for redemption at par from this date onward.
    sentences:
      - >-
        What is the earliest date on which the 7% Notes due 2029 can be redeemed
        at par?
      - >-
        What are some of the initiatives managed by Visa for supporting
        underrepresented communities?
      - >-
        Who are the competitors for Microsoft's server applications in PC-based
        environments?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6942857142857143
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8314285714285714
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8728571428571429
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9071428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6942857142857143
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27714285714285714
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17457142857142854
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09071428571428569
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6942857142857143
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8314285714285714
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8728571428571429
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9071428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8042383857063928
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7708656462585032
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7746128511093645
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6985714285714286
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8371428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.87
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9114285714285715
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6985714285714286
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27904761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.174
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09114285714285714
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6985714285714286
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8371428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.87
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9114285714285715
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8075815858913178
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7741315192743762
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7776656953157759
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.7
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.83
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.86
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9071428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27666666666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17199999999999996
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0907142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.83
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.86
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9071428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8048199967282856
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7720073696145123
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.775510167698765
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.67
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8185714285714286
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8571428571428571
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8971428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.67
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27285714285714285
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1714285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0897142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.67
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8185714285714286
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8571428571428571
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8971428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7867880427582347
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7511031746031744
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7551868866444579
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.65
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7914285714285715
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8385714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8785714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.65
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26380952380952377
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16771428571428568
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08785714285714286
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.65
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7914285714285715
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8385714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8785714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7645553995345995
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.727849206349206
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.73258711812532
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Jaswanth160/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'The par call date for the 7% Notes due 2029 is August 15, 2025, allowing for redemption at par from this date onward.',
    'What is the earliest date on which the 7% Notes due 2029 can be redeemed at par?',
    'What are some of the initiatives managed by Visa for supporting underrepresented communities?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6943
cosine_accuracy@3 0.8314
cosine_accuracy@5 0.8729
cosine_accuracy@10 0.9071
cosine_precision@1 0.6943
cosine_precision@3 0.2771
cosine_precision@5 0.1746
cosine_precision@10 0.0907
cosine_recall@1 0.6943
cosine_recall@3 0.8314
cosine_recall@5 0.8729
cosine_recall@10 0.9071
cosine_ndcg@10 0.8042
cosine_mrr@10 0.7709
cosine_map@100 0.7746

Information Retrieval

Metric Value
cosine_accuracy@1 0.6986
cosine_accuracy@3 0.8371
cosine_accuracy@5 0.87
cosine_accuracy@10 0.9114
cosine_precision@1 0.6986
cosine_precision@3 0.279
cosine_precision@5 0.174
cosine_precision@10 0.0911
cosine_recall@1 0.6986
cosine_recall@3 0.8371
cosine_recall@5 0.87
cosine_recall@10 0.9114
cosine_ndcg@10 0.8076
cosine_mrr@10 0.7741
cosine_map@100 0.7777

Information Retrieval

Metric Value
cosine_accuracy@1 0.7
cosine_accuracy@3 0.83
cosine_accuracy@5 0.86
cosine_accuracy@10 0.9071
cosine_precision@1 0.7
cosine_precision@3 0.2767
cosine_precision@5 0.172
cosine_precision@10 0.0907
cosine_recall@1 0.7
cosine_recall@3 0.83
cosine_recall@5 0.86
cosine_recall@10 0.9071
cosine_ndcg@10 0.8048
cosine_mrr@10 0.772
cosine_map@100 0.7755

Information Retrieval

Metric Value
cosine_accuracy@1 0.67
cosine_accuracy@3 0.8186
cosine_accuracy@5 0.8571
cosine_accuracy@10 0.8971
cosine_precision@1 0.67
cosine_precision@3 0.2729
cosine_precision@5 0.1714
cosine_precision@10 0.0897
cosine_recall@1 0.67
cosine_recall@3 0.8186
cosine_recall@5 0.8571
cosine_recall@10 0.8971
cosine_ndcg@10 0.7868
cosine_mrr@10 0.7511
cosine_map@100 0.7552

Information Retrieval

Metric Value
cosine_accuracy@1 0.65
cosine_accuracy@3 0.7914
cosine_accuracy@5 0.8386
cosine_accuracy@10 0.8786
cosine_precision@1 0.65
cosine_precision@3 0.2638
cosine_precision@5 0.1677
cosine_precision@10 0.0879
cosine_recall@1 0.65
cosine_recall@3 0.7914
cosine_recall@5 0.8386
cosine_recall@10 0.8786
cosine_ndcg@10 0.7646
cosine_mrr@10 0.7278
cosine_map@100 0.7326

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 47.11 tokens
    • max: 439 tokens
    • min: 7 tokens
    • mean: 20.36 tokens
    • max: 51 tokens
  • Samples:
    positive anchor
    For some of our medical membership, we share risk with providers under capitation contracts where physicians and hospitals accept varying levels of financial risk for a defined set of membership, primarily HMO membership. What is the primary type of membership for which risk is shared with providers under capitation contracts?
    Revenue for Comcast's Theme Parks segment is primarily derived from guest spending at the theme parks, including ticket sales and in-park spending on food, beverages, and merchandise. What is the primary revenue source for Comcast's Theme Parks segment?
    In August 2022, the Board of Directors authorized a program to repurchase up to $10.0 billion of the Company’s common stock, referred to as the "Share Repurchase Program". In February 2023, the Board of Directors authorized an additional $10.0 billion in repurchases under the Share Repurchase Program, bringing the aggregate total authorized to $20.0 billion. What was the total authorization amount for the Share Repurchase Program of the Company as of February 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.5811 - - - - -
0.9746 12 - 0.7341 0.7568 0.7632 0.7056 0.7660
1.6244 20 0.6854 - - - - -
1.9492 24 - 0.7516 0.7705 0.7722 0.7263 0.7702
2.4365 30 0.4874 - - - - -
2.9239 36 - 0.755 0.7747 0.7756 0.7321 0.7739
3.2487 40 0.3876 - - - - -
3.8985 48 - 0.7552 0.7755 0.7777 0.7326 0.7746
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}