SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 2048-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 2048 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: GemmaModel
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("Jaume/gemma-2b-embeddings")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 2048]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
- Downloads last month
- 235
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Spaces using Jaume/gemma-2b-embeddings 2
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported67.493
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported30.935
- ap_weighted on MTEB AmazonCounterfactualClassification (en)test set self-reported30.935
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported61.848
- f1_weighted on MTEB AmazonCounterfactualClassification (en)test set self-reported70.733
- main_score on MTEB AmazonCounterfactualClassification (en)test set self-reported67.493
- accuracy on MTEB AmazonReviewsClassification (en)test set self-reported34.896
- f1 on MTEB AmazonReviewsClassification (en)test set self-reported34.751
- f1_weighted on MTEB AmazonReviewsClassification (en)test set self-reported34.751
- main_score on MTEB AmazonReviewsClassification (en)test set self-reported34.896