Edit model card

6bpw exl2 quant of: https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2

huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2

This is an uncensored version of Qwen2.5-14B-Instruct created with abliteration (see this article to know more about it).

Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models.

Important Note This version is an improvement over the previous one Qwen2.5-14B-Instruct-abliterated.

Usage

You can use this model in your applications by loading it with Hugging Face's transformers library:

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
model_name = "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Initialize conversation context
initial_messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
]
messages = initial_messages.copy()  # Copy the initial conversation context

# Enter conversation loop
while True:
    # Get user input
    user_input = input("User: ").strip()  # Strip leading and trailing spaces

    # If the user types '/exit', end the conversation
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break

    # If the user types '/clean', reset the conversation context
    if user_input.lower() == "/clean":
        messages = initial_messages.copy()  # Reset conversation context
        print("Chat history cleared. Starting a new conversation.")
        continue

    # If input is empty, prompt the user and continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue

    # Add user input to the conversation
    messages.append({"role": "user", "content": user_input})

    # Build the chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

    # Tokenize input and prepare it for the model
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    # Generate a response from the model
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=8192
    )

    # Extract model output, removing special tokens
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    # Add the model's response to the conversation
    messages.append({"role": "assistant", "content": response})

    # Print the model's response
    print(f"Qwen: {response}")

Evaluations

Evaluation is ongoing, to be continued later.

Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Jellon/Qwen2.5-14B-Instruct-abliterated-v2-6bpw

Base model

Qwen/Qwen2.5-14B
Quantized
(73)
this model