metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8455882352941176
- name: F1
type: f1
value: 0.8900523560209423
bert-base-uncased-mrpc
This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.6524
- Accuracy: 0.8456
- F1: 0.8901
- Combined Score: 0.8678
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
No log | 1.0 | 230 | 0.4111 | 0.8088 | 0.8704 | 0.8396 |
No log | 2.0 | 460 | 0.3762 | 0.8480 | 0.8942 | 0.8711 |
0.4287 | 3.0 | 690 | 0.5572 | 0.8578 | 0.9024 | 0.8801 |
0.4287 | 4.0 | 920 | 0.6087 | 0.8554 | 0.8977 | 0.8766 |
0.1172 | 5.0 | 1150 | 0.6524 | 0.8456 | 0.8901 | 0.8678 |
Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1