Jeremiah Zhou
update model card README.md
65cd154
|
raw
history blame
2.18 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: bert-base-uncased-mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MRPC
          type: glue
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8578431372549019
          - name: F1
            type: f1
            value: 0.9023569023569024

bert-base-uncased-mrpc

This model is a fine-tuned version of bert-base-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5572
  • Accuracy: 0.8578
  • F1: 0.9024
  • Combined Score: 0.8801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
No log 1.0 230 0.4111 0.8088 0.8704 0.8396
No log 2.0 460 0.3762 0.8480 0.8942 0.8711
0.4287 3.0 690 0.5572 0.8578 0.9024 0.8801
0.4287 4.0 920 0.6087 0.8554 0.8977 0.8766
0.1172 5.0 1150 0.6524 0.8456 0.8901 0.8678

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1