CodeLlama-7B-Kexer / README.md
Titovs's picture
Update README.md (#2)
298c26a verified
|
raw
history blame
2.29 kB
---
license: apache-2.0
---
# Kexer models
Kexer models is a collection of fine-tuned open-source generative text models fine-tuned on Kotlin Exercices dataset.
This is a repository for fine-tuned CodeLlama-7b model in the Hugging Face Transformers format.
# Model use
```
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load pre-trained model and tokenizer
model_name = 'JetBrains/CodeLlama-7B-Kexer' # Replace with the desired model name
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).cuda()
# Encode input text
input_text = """This function takes an integer n and returns factorial of a number:
fun factorial(n: Int): Int {"""
input_ids = tokenizer.encode(input_text, return_tensors='pt').to('cuda')
# Generate text
output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True)
# Decode and print the generated text
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
```
# Training setup
The model was trained on one A100 GPU with following hyperparameters:
| **Hyperparameter** | **Value** |
|:---------------------------:|:----------------------------------------:|
| `warmup` | 10% |
| `max_lr` | 1e-4 |
| `scheduler` | linear |
| `total_batch_size` | 256 (~130K tokens per step) |
# Fine-tuning data
For this model we used 15K exmaples of Kotlin Exercices dataset {TODO: link!}. For more information about the dataset follow th link.
# Evaluation
To evaluate we used Kotlin Humaneval (more infromation here)
Fine-tuned model:
| **Model name** | **Kotlin HumanEval Pass Rate** | **Kotlin Completion** |
|:---------------------------:|:----------------------------------------:|:----------------------------------------:|
| `base model` | 26.89 | 0.388 |
| `fine-tuned model` | 42.24 | 0.344 |