Files changed (4) hide show
  1. .gitattributes +35 -0
  2. LICENSE +0 -125
  3. NOTICE +0 -1
  4. README.md +24 -24
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
LICENSE DELETED
@@ -1,125 +0,0 @@
1
- LLAMA 2 COMMUNITY LICENSE AGREEMENT
2
- Llama 2 Version Release Date: July 18, 2023
3
-
4
- "Agreement" means the terms and conditions for use, reproduction, distribution and
5
- modification of the Llama Materials set forth herein.
6
-
7
- "Documentation" means the specifications, manuals and documentation
8
- accompanying Llama 2 distributed by Meta at ai.meta.com/resources/models-and-
9
- libraries/llama-downloads/.
10
-
11
- "Licensee" or "you" means you, or your employer or any other person or entity (if
12
- you are entering into this Agreement on such person or entity's behalf), of the age
13
- required under applicable laws, rules or regulations to provide legal consent and that
14
- has legal authority to bind your employer or such other person or entity if you are
15
- entering in this Agreement on their behalf.
16
-
17
- "Llama 2" means the foundational large language models and software and
18
- algorithms, including machine-learning model code, trained model weights,
19
- inference-enabling code, training-enabling code, fine-tuning enabling code and other
20
- elements of the foregoing distributed by Meta at ai.meta.com/resources/models-and-
21
- libraries/llama-downloads/.
22
-
23
- "Llama Materials" means, collectively, Meta's proprietary Llama 2 and
24
- Documentation (and any portion thereof) made available under this Agreement.
25
-
26
- "Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you
27
- are an entity, your principal place of business is in the EEA or Switzerland) and Meta
28
- Platforms, Inc. (if you are located outside of the EEA or Switzerland).
29
-
30
- By clicking "I Accept" below or by using or distributing any portion or element of the
31
- Llama Materials, you agree to be bound by this Agreement.
32
-
33
- 1. License Rights and Redistribution.
34
-
35
- a. Grant of Rights. You are granted a non-exclusive, worldwide, non-
36
- transferable and royalty-free limited license under Meta's intellectual property or
37
- other rights owned by Meta embodied in the Llama Materials to use, reproduce,
38
- distribute, copy, create derivative works of, and make modifications to the Llama
39
- Materials.
40
-
41
- b. Redistribution and Use.
42
-
43
- i. If you distribute or make the Llama Materials, or any derivative works
44
- thereof, available to a third party, you shall provide a copy of this Agreement to such
45
- third party.
46
- ii. If you receive Llama Materials, or any derivative works thereof, from
47
- a Licensee as part of an integrated end user product, then Section 2 of this
48
- Agreement will not apply to you.
49
-
50
- iii. You must retain in all copies of the Llama Materials that you
51
- distribute the following attribution notice within a "Notice" text file distributed as a
52
- part of such copies: "Llama 2 is licensed under the LLAMA 2 Community License,
53
- Copyright (c) Meta Platforms, Inc. All Rights Reserved."
54
-
55
- iv. Your use of the Llama Materials must comply with applicable laws
56
- and regulations (including trade compliance laws and regulations) and adhere to the
57
- Acceptable Use Policy for the Llama Materials (available at
58
- https://ai.meta.com/llama/use-policy), which is hereby incorporated by reference into
59
- this Agreement.
60
-
61
- v. You will not use the Llama Materials or any output or results of the
62
- Llama Materials to improve any other large language model (excluding Llama 2 or
63
- derivative works thereof).
64
-
65
- 2. Additional Commercial Terms. If, on the Llama 2 version release date, the
66
- monthly active users of the products or services made available by or for Licensee,
67
- or Licensee's affiliates, is greater than 700 million monthly active users in the
68
- preceding calendar month, you must request a license from Meta, which Meta may
69
- grant to you in its sole discretion, and you are not authorized to exercise any of the
70
- rights under this Agreement unless or until Meta otherwise expressly grants you
71
- such rights.
72
-
73
- 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE
74
- LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE
75
- PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
76
- EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY
77
- WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR
78
- FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE
79
- FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING
80
- THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR
81
- USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
82
-
83
- 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE
84
- LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT,
85
- NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS
86
- AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL,
87
- CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN
88
- IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF
89
- ANY OF THE FOREGOING.
90
-
91
- 5. Intellectual Property.
92
-
93
- a. No trademark licenses are granted under this Agreement, and in
94
- connection with the Llama Materials, neither Meta nor Licensee may use any name
95
- or mark owned by or associated with the other or any of its affiliates, except as
96
- required for reasonable and customary use in describing and redistributing the
97
- Llama Materials.
98
-
99
- b. Subject to Meta's ownership of Llama Materials and derivatives made by or
100
- for Meta, with respect to any derivative works and modifications of the Llama
101
- Materials that are made by you, as between you and Meta, you are and will be the
102
- owner of such derivative works and modifications.
103
-
104
- c. If you institute litigation or other proceedings against Meta or any entity
105
- (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama
106
- Materials or Llama 2 outputs or results, or any portion of any of the foregoing,
107
- constitutes infringement of intellectual property or other rights owned or licensable
108
- by you, then any licenses granted to you under this Agreement shall terminate as of
109
- the date such litigation or claim is filed or instituted. You will indemnify and hold
110
- harmless Meta from and against any claim by any third party arising out of or related
111
- to your use or distribution of the Llama Materials.
112
-
113
- 6. Term and Termination. The term of this Agreement will commence upon your
114
- acceptance of this Agreement or access to the Llama Materials and will continue in
115
- full force and effect until terminated in accordance with the terms and conditions
116
- herein. Meta may terminate this Agreement if you are in breach of any term or
117
- condition of this Agreement. Upon termination of this Agreement, you shall delete
118
- and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the
119
- termination of this Agreement.
120
-
121
- 7. Governing Law and Jurisdiction. This Agreement will be governed and
122
- construed under the laws of the State of California without regard to choice of law
123
- principles, and the UN Convention on Contracts for the International Sale of Goods
124
- does not apply to this Agreement. The courts of California shall have exclusive
125
- jurisdiction of any dispute arising out of this Agreement.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTICE DELETED
@@ -1 +0,0 @@
1
- Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved
 
 
README.md CHANGED
@@ -2,27 +2,26 @@
2
  license: apache-2.0
3
  datasets:
4
  - JetBrains/KExercises
5
- base_model: meta-llama/CodeLlama-7b-hf
6
  results:
7
- - task:
8
- type: text-generation
9
- dataset:
10
- name: MultiPL-HumanEval (Kotlin)
11
- type: openai_humaneval
12
- metrics:
13
- - name: pass@1
14
- type: pass@1
15
- value: 42.24
16
  tags:
17
  - code
18
  ---
19
 
20
  # Kexer models
21
 
22
- Kexer models are a collection of open-source generative text models fine-tuned on the [Kotlin Exercices](https://huggingface.co/datasets/JetBrains/KExercises) dataset.
23
- This is a repository for the fine-tuned **CodeLlama-7b** model in the *Hugging Face Transformers* format.
24
 
25
- # How to use
26
 
27
  ```python
28
  from transformers import AutoModelForCausalLM, AutoTokenizer
@@ -43,8 +42,8 @@ input_ids = tokenizer.encode(
43
 
44
  # Generate
45
  output = model.generate(
46
- input_ids, max_length=60, num_return_sequences=1,
47
- early_stopping=True, pad_token_id=tokenizer.eos_token_id,
48
  )
49
 
50
  # Decode output
@@ -59,7 +58,7 @@ As with the base model, we can use FIM. To do this, the following format must be
59
 
60
  # Training setup
61
 
62
- The model was trained on one A100 GPU with the following hyperparameters:
63
 
64
  | **Hyperparameter** | **Value** |
65
  |:---------------------------:|:----------------------------------------:|
@@ -69,23 +68,24 @@ The model was trained on one A100 GPU with the following hyperparameters:
69
  | `total_batch_size` | 256 (~130K tokens per step) |
70
  | `num_epochs` | 4 |
71
 
72
- More details about fine-tuning can be found in the technical report (coming soon!).
73
 
74
  # Fine-tuning data
75
 
76
- For tuning this model, we used 15K exmaples from the synthetically generated [Kotlin Exercices](https://huggingface.co/datasets/JetBrains/KExercises) dataset. Every example follows the HumanEval format. In total, the dataset contains about 3.5M tokens.
 
77
 
78
  # Evaluation
79
 
80
- For evaluation, we used the [Kotlin HumanEval](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval) dataset, which contains all 161 tasks from HumanEval translated into Kotlin by human experts. You can find more details about the pre-processing necessary to obtain our results, including the code for running, on the [datasets's page](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval).
81
 
82
- Here are the results of our evaluation:
83
 
84
  | **Model name** | **Kotlin HumanEval Pass Rate** |
85
  |:---------------------------:|:----------------------------------------:|
86
- | `CodeLlama-7B` | 26.89 |
87
- | `CodeLlama-7B-Kexer` | **42.24** |
88
 
89
- # Ethical considerations and limitations
90
 
91
- CodeLlama-7B-Kexer is a new technology that carries risks with use. The testing conducted to date has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, CodeLlama-7B-Kexer's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. The model was fine-tuned on a specific data format (Kotlin tasks), and deviation from this format can also lead to inaccurate or undesirable responses to user queries. Therefore, before deploying any applications of CodeLlama-7B-Kexer, developers should perform safety testing and tuning tailored to their specific applications of the model.
 
2
  license: apache-2.0
3
  datasets:
4
  - JetBrains/KExercises
 
5
  results:
6
+ - task:
7
+ type: text-generation
8
+ dataset:
9
+ name: MultiPL-HumanEval (Kotlin)
10
+ type: openai_humaneval
11
+ metrics:
12
+ - name: pass@1
13
+ type: pass@1
14
+ value: 42.24
15
  tags:
16
  - code
17
  ---
18
 
19
  # Kexer models
20
 
21
+ Kexer models is a collection of fine-tuned open-source generative text models fine-tuned on Kotlin Exercices dataset.
22
+ This is a repository for fine-tuned CodeLlama-7b model in the Hugging Face Transformers format.
23
 
24
+ # Model use
25
 
26
  ```python
27
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
42
 
43
  # Generate
44
  output = model.generate(
45
+ input_ids, max_length=150, num_return_sequences=1,
46
+ no_repeat_ngram_size=2, early_stopping=True
47
  )
48
 
49
  # Decode output
 
58
 
59
  # Training setup
60
 
61
+ The model was trained on one A100 GPU with following hyperparameters:
62
 
63
  | **Hyperparameter** | **Value** |
64
  |:---------------------------:|:----------------------------------------:|
 
68
  | `total_batch_size` | 256 (~130K tokens per step) |
69
  | `num_epochs` | 4 |
70
 
71
+ More details about finetuning can be found in the technical report
72
 
73
  # Fine-tuning data
74
 
75
+ For this model we used 15K exmaples of Kotlin Exercices dataset {TODO: link!}. Every example follows HumanEval like format. In total dataset contains about 3.5M tokens.
76
+ For more information about the dataset follow the link.
77
 
78
  # Evaluation
79
 
80
+ To evaluate we used Kotlin Humaneval (more infromation here)
81
 
82
+ Fine-tuned model:
83
 
84
  | **Model name** | **Kotlin HumanEval Pass Rate** |
85
  |:---------------------------:|:----------------------------------------:|
86
+ | `base model` | 26.89 |
87
+ | `fine-tuned model` | 42.24 |
88
 
89
+ # Ethical Considerations and Limitations
90
 
91
+ Code Llama and its variants are a new technology that carries risks with use. The testing conducted to date could not cover all scenarios. For these reasons, as with all LLMs, Kexer's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. The model was fine-tuned on a specific data format (Kotlin tasks), and deviation from this format can also lead to inaccurate or undesirable responses to user queries. Therefore, before deploying any applications of Kexer, developers should perform safety testing and tuning tailored to their specific applications of the model.