Edit model card

This is model is compiled explicitly for AWS Neuronx(inferentia 2 / trainium 1) with the following codes:

from datasets import load_dataset
from transformers import AutoProcessor

from optimum.neuron import NeuronModelForAudioClassification, pipeline


dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
dataset = dataset.sort("id")
sampling_rate = dataset.features["audio"].sampling_rate

model_id = "facebook/wav2vec2-large-960h-lv60-self"
processor = AutoProcessor.from_pretrained(model_id)
input_shapes = {"batch_size": 1, "audio_sequence_length": 100000}
compiler_args = {"auto_cast": "matmul", "auto_cast_type": "bf16"}
model = NeuronModelForAudioClassification.from_pretrained(
    model_id,
    export=True,
    disable_neuron_cache=True,
    **input_shapes,
    **compiler_args,
)
model.save_pretrained("wav2vec2_neuron")
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.